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Abstract

This Project evaluates the forecasting performance of a Brownian Semi-Stationary (BSS)
process in modelling the volatility of 21 equity indices. We implement a sophisticated Hybrid
Scheme to simulate BSS processes with high efficiency and precision. These simulations
are useful to price derivatives, accounting for rough volatility. Then we calibrate the BSS
parameters for the realised kernel of 21 equity indices, using data from the Oxford-Man
Institute. We conduct one- and ten-step ahead forecasts on six indices and find that the BSS
outperforms our benchmarks, including a Log-HAR specification, in the majority of cases.

Authors: Reviewers:

Lukas Grimm Prof. Christian Brownlees
Jonathan Haynes Prof. Eulalia Nualart
Daniel Schmitt

Barcelona, 31 May 2017



Contents

1 Intr 1

Literature Revi

(3.1 Observing and Measuring Volatility| . . . . . ... ... ... ... ......

(3.2 Stylised Facts of Volatility|
[3.2.1  Fractal Geometry|

[3.2.2  Volatilityis Roughl . . . . ... ... ... o 0000

[3.2.3  Volatility 1s Persistent) . . . . . . ... ... oo oL

[5.2 Forecasting with BSS| . .
[5.3  Forecasting Performance]

[\

O 0000119 n W B~

10

11
11
13
15

16

16

19



1 Introduction

Accurate models of asset volatility are useful in asset pricing and risk management. Forecasts
of volatility are used in derivatives pricing and hedging, market making, market time, portfolio
selection, and many other financial activities. In each case it is the predictability of volatility
that is of importance. An options trader wants to know how the volatility of the asset that he is
trying to price will evolve over the lifetime of the contract. A risk manager wants to know the
probability that his portfolio will decline in the future. A market-maker may want to widen her
spread when volatility is expected to rise. She may also want to know the forecasted volatility
of her position to hedge against large price swings of her inventory. A portfolio manager may
want to sell a stock before it becomes too volatile. Other portfolio managers may want to take a
position on volatility as an asset class in itself, either as a macro hedge or as a speculative play.
In corporate finance, volatility is used as an input for pricing Real Option Values when valuing
prospective projects. Finally, in monetary policy, volatility of asset prices are used as a measure
of risk and uncertainty. These examples give just a flavour of the practical motivation behind
being able to accurately forecast asset volatility.

A good model of asset volatility must be able to forecast volatility. This is not straightforward
since volatility itself is not observed. We need to find a proxy for it. Typically volatility models
are used to forecast absolute or squared returns, but they may also be used to predict quantiles
or even possibly the complete density function. For example, a good model specification for
volatility is required to price and hedge certain types of financial derivatives or to forecast value-at
risk (VaR) quantiles. Better proxies have been developed more recently in the continuous time
finance setting by exploiting quadratic variation to obtain realised volatility. This estimator may
not provide an accurate estimate if prices are measured in the presence of market micro structure
noise. A wide range of robust realised measures of volatility, such as the realised kernel estimator,
have been further developed to address this. This paper uses the realised kernel estimator as our
robust estimator of volatility.

A well-specified volatility model should perform well over time. The accuracy of a volatility
model in forecasting out-of-sample can be evaluated by comparing the results using a loss
function, such as the Quasi-likelihood (QL) or Mean-Square Error (MSE), against benchmark
models.

The main purpose of this Project is to evaluate the forecasting performance of the BSS model
against a series of benchmark volatility models that preceded it. The benchmarks are a rolling
variance, Exponential Weighted Moving Average (EWMA) and Log-HAR specification. We
download daily data on the volatility of 21 stock indices from around the world. After conducting
a one-step and ten-step ahead forecasts of the log volatility of these 21 assets, we then compare
the MSE and QL against our benchmark models.

The paper is structured as follows: Section 2 reviews the literature on estimating volatility;
Section 3 sets out the theoretical background; Section 4 introduces the data for the empirical
analysis described in Section 5 and Section 6 concludes.



2 Literature Review

Volatility modelling is a topic that has received considerable interest. The extensive literature is
probably a reflection of the importance of volatility in investment, valuation, risk management
and monetary policy making.

A number of stylised facts about the volatility of financial asset prices have emerged over
the years and been confirmed in numerous studies. Mandelbrot (1963)) and Fama| (1965) both
reported evidence of persistence in volatility. They found that large changes in the price of an
asset are often followed by subsequent large changes, and small changes are often followed by
subsequent small changes. The long memory property of the volatility of a financial asset has
been widely accepted as a stylised fact since the seminal work of Ding et al.|(1993), Andersen
and Bollerslev| (1998)) and |Andersen et al. (2003). Initially long memory referred to the slow
decay of the autocorrelation function (ACF), that is anything slower than an exponential decay.
More recently, long memory has been formalized as non-integrability of the autocorrelation
function. |Gatheral et al.[(2014) found evidence of ‘roughness’ in volatility by analysing high
frequency price data on DAX and Bund futures contracts and US equity indices. Bennedsen et al.
(2016)) find a similar pattern in the volatility of E-mini S&P 500 futures contracts at intraday
time scales and 29 individual US equities at daily frequency. A good volatility model should be
able to capture these stylised facts of persistence and long memory, and roughness.

Over time modellers have tried to incorporate these stylised facts through different functional
forms. Early models were based on simple historical values. Then following the seminal work
of Engle (1982)) the vast majority of subsequent studies on modelling volatility relied on his
Autoregressive Conditional Heteroskedastic (ARCH) framework. There is now a large and
diverse time-series literature on volatility modelling. [Poon and Granger (2003) provide a good
overview of how early models of asset volatiltiy tried to progressively improve to incorporate
the stylised facts of persistence and long memory. Roughness is well covered in Gatheral et al.
(2014).

The simplest historical model is the random walk, which simply uses the previous period of
volatility,(o;) to forecast volatility in the next period, o; 1. Next, there are a set of (deterministic)
models based on historical average methods. These include the Moving Average (MA), Expo-
nential Moving Average (EMA) and the Exponentially Weighted Moving Average (EWMA)
methods. In contrast to the other two, the EWMA places greater weight on more recent volatility
estimates. Autoregressive (AR) models predict future values based on past values of order p.
By including past volatility errors we arrive at the ARMA model specification. Finally, if we
introduce a differencing of order I(d), we get to the AutoRegressive Integrated Moving Average
(ARIMA) models when d=1 and the AutoRegressive Fractional Integrated Moving Average
(ARFIMA) when d<1. All these models are similar in that the model specifications generate
predictions based on historical estimates of volatility.

The next more sophisticated group of volatility models is the ARCH family of conditional
volatility models. These predict future volatility based on the conditional variance of returns
via maximum likelihood estimation. The first example is the ARCH(q) model of |[Engle| (1982)
where o, 1s a function of q past squared returns. In the GARCH(p,q) version of Bollerslev| (1986)
additional dependencies are permitted on p lags of past o2 and q lags of past square returns.
Numerous extensions of have since been proposed, including: the Threshold GARCH (TARCH)



that allows for asymmetries from leverage effects, the Exponential GARCH (EGARCH) by
Nelson (1991) that relaxes the non-negative parameter restrictions and the fractionally integrated
version (FIGARCH) of [Baillie et al| (1996) with d > 0[]

In the stochastic volatility modelling framework, volatility is subject to a source of innovation
that may or may not be related to the factors that drive returns. Poon and Granger (2003) explains
how modelling volatility as a stochastic variable immediately leads to fat tail distributions for
returns. The autoregressive term in the volatility process introduces persistence, and correlation
between the two innovation terms in the volatility process and the returns process produces the
volatility asymmetry (see Hull and White (1987)and |[Hull and White| (1988)). Heynen and Kat
(1994)), Heynen! (1995) and Yu (2002) found that stochastic volatility forecasts performed best for
stock indices, but Heynen and Kat (1994) concluded that the EGARCH and GARCH produced
better forecasts for exchange rates. Long memory stochastic volatility models have also been
proposed by allowing volatility to have a fractional integrated order (see Harvey| (1998)). The
noise term makes the stochastic volatility model more flexible, but the cost is that they do not
have a closed form and, as a result, can not be estimated directly, e.g. by maximum likelihood.
Rather they can be estimated via simulation (e.g. [Duffie and Singleton| (1993)) or numerical
integration.

More recent market practice is to use local-stochastic-volatility (LSV) models, where
0=0(S;,t), which both fit the market exactly and generate reasonable dynamics (Gatheral et al.
(2014)). In recent years there has been increased interest in rough models of volatility. This is due
to both theoretical developments in implied volatility modelling El Euch et al. (2016) as well as
empirical evidence based on realised volatility (see |Gatheral et al.[|(2014)). Researchers have
found that standard Brownian motion is not ‘rough’ enough and is non-stationary, so more recent
works have taken inspiration from fractional Brownian Motion (fBM), which is a stationary
process that is able to exhibit roughness. Bennedsen et al.| (2016)), inspired by the fractional
stochastic volatility (FSV) model of |Comte and Renault (1996), propose using a Brownian
Semi-Stationary (BSS) process in order to allow a decoupling of the persistence and roughness
of the volatility in the simulating and forecasting of volatility.

In the previous section we highlighted how the correct specification of volatility is of
fundamental importance for option pricing. As volatility models described above have become
more sophisticated, this has lead to more advanced models of option pricing.

It is now well-known that the first seminal Black-Scholes formula Black and Scholes| (1973)
for option pricing fails to explain the implied volatility in out-of-the-money option contracts.
By relying on a standard geometric Brownian motion with the simplified assumptions of a
constant interest rate and a constant volatility, the Black-Scholes model has consistently failed to
explain that the real-life "implied volatility’ of option contracts heavily depends on the the time
to maturity of the contract and the extent to which the contract is currently in or out of the money.
Practitioners refer to this phenomenon as the ’volatility smile.” This led to subsequent improved
model specifications for volatility in option pricing. For example, Hull and White (1987)) propose
an option pricing model with volatility of the underlying asset as not only time-varying but

! As Hwang and Satchell (1998) and |Granger| (2000) point out that a major weakness of adopting the FIGARCH is
that a positive I(d) process has a positive drift term or a time trend at the volatility level which is unobserved in
practice. This makes it a poor model for our purpose.



also subject to a specific risk, coined the ’stochastic volatility paradigm’. This adjustment helps
explain some of the stylised facts in the volatility smile. Comte and Renault (1998) propose a
model to capture volatility persistence and particularly the occurrence of fairly pronounced smile
effects even for rather long maturity options. This takes advantage of the Comte and Renault
(1996)) FSV model above. This was one of the first option pricing models to account for volatility
persistence. More recent models have tried to also better account for the roughness, e.g. Bayer
et al. (2016).

The added value of this Project is to give a broad overview to the new class of fractal processes
for modelling volatility. We validate the BSS model of Bennedsen et al. (2016)), identify potential
areas for improvement and apply it to a wider range of equity indices.

3 Theory

Let us consider an asset whose price at time t, S;, follows a Geometric Brownian motion, such
that the dynamics of S; in continuous time are given by the stochastic differential equation

dSt = Sf(:utdt + O-tdBt) (1)

where B; = (By);>¢ is standard Brownian motion, p = (j)¢>0 a drift process and o; =
(01)1>0 a spot volatility process. As we are interested in volatility, our focus is with respect to the
process 0, = (0¢):>0. In particular, we adopt the following model outlined by Bennedsen et al.
(2016)

op = & 2)
where ¢ originally denotes the variance swap forward curve. However, given the complexity
of estimating this curve it is left as a free positive parameter hence the model is primarily driven
by the process X;.
This section begins by exploring how best to measure past realisations of ;. It then introduces
some stylised facts of volatility and shows how they may be incorporated through X,.

3.1 Observing and Measuring Volatility

True volatility of a price process is unobservable and hence must be proxied for. High frequency
data allows for very accurate proxies to be estimated however issues arise when market micro-
structure noise is introduced. In the following we present a brief theoretical overview of how
estimate volatility under these conditions.

Specifying a step size A > 0 such that " = nA for some large n € N, one can define the
integrated variance

t
VA = / olds, t=A2A,....,nA 3)
t—A

where o2 is the spot variance. Choosing A sufficiently small, the integrated variance provides
an estimate of the spot variance

62 =ATVE t=A2A,...,nA (4)
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Theoretically,
Jim 62 = o} (5)
One can approximate [ VtA through the realised variance which is defined by discretising the
integral in equation (2) as follow

N

RV, =) (8 — Sim1)? (6)

=1

where S; and S;_; are the observed prices at the beginning and end of each discretisation
N
cell. Barndorff-Nielsen (2002) show that the realised variance converges to /1, in probability.
However, at high frequencies prices are subject to market microstructure noise, in effect masking
the true price and thus spot volatility of the asset. As shown by Masoliver et al. (2014), if we
define the observed price as

Sy =S; +e (N

where S} is the true price and ¢, is a noise term, the realised variance can be decomposed as
follows

N

N
RV, = RV; +2) (Si— Sici)(e —e—1) + (& — e1-1)° (8)

i=1 =1

. . . . A~ A . . . .
resulting in a biased estimator of /1, . Given this bias, alternative methods have been

proposed to estimate / T/tA , such as realised kernels (Andersen et al. (2001); Barndorff-Nielsen
(2002)), two-scale estimators (Zhang et al., 2006)), and pre-averaging methods (Jacod et al.,
2009). Masoliver et al.|(2014])) find that the realised kernel outperforms realised variance at high

. : _ NN
frequencies, hence we choose it as our estimator of IV, .

3.2 Stylised Facts of Volatility

While it has been well documented that volatility in financial markets is persistent, more recently
it has also been empirically shown to be rough (Gatheral et al.,[2014)). That is, standard Brownian
motion fails to accurately simulate empirical volatility of financial assets because the process is
smoother than the realised prices.

3.2.1 Fractal Geometry

In order to model more realistic processes, researchers can use fractal geometry, e.g. see (Comte
and Renault| (1996)), Mandelbrot (1963). Fractal geometry is distinct from Euclidean geometry,
specifically in the sense that it allows for non-integer or fractal dimensions. In order to quantify
the roughness, one can count the number of circles of radius r required to cover the time series.
Increasing r and repeating the process leads to the following relationship



N(@2r)?=1, de(1,2) 9)

where N is the number of circles required, r is the radius and d is the fractal dimension of a
line. For a straight line, that is a deterministic process, d is 1 while for a random walk itis 1.5,
given that the process has an equal probability of going up or down. For 1 < d < 1.5 the process
is somewhere between deterministic and random, that is, it is somewhat trending. On the other
hand, 1.5 < d < 2 implies it is rougher than a random walk, i.e. it has more reversals (see |Peters
(1994)).

3.2.2 Volatility is Rough

Since prices are thought to be rough, hence more erratic than a standard Brownian motion, they
may be modelled by a process with fractal dimension 1.5 < d < 2. Directly related to d is the
Hurst exponent H

d=2—-H, H e (0,1) (10)
and the fractal index «
11
d=15— — = 11
o ae(CL) w

which Bennedsen et al.| (2016) dub the roughness index. The Hurst exponent, proposed in
Hurst et al.| (1965) is a measure of dependence as it captures the scaling behaviour of correlations
within a time series with respect to the observation period and time resolution (D1 Matteo et al.,
2003)). It is straight forward to define H in terms of the fractal index

1
H=3+a (12)

Considering a covariance stationary time series X (¢), Di Matteo et al.|(2003) show H can be
generalised in terms of the gq-order moments of the distribution of X (¢)’s increments,

K,(r) = E|X(t+T1)— X(t)|q]N <Z>qH(q)
E[X(t)]]
where K, is the g-order moment, 7 is the time interval between increments, X, is the
underlying time series, ¢ is some order greater 0, v is the time resolution and H(q) is the
generalized Hurst parameter of order q. Here ~ means that the ratio of the left and right hand
side tends to a constant as 7 goes to infinity. Of particular interest is the second moment which
allows Bennedsen et al. (2016) to find the following expression

(13)

(%

1 — p(h) =1 — Corr(log oy, log o p)~|h[** T, |h|— 0 (14)

where p denotes the autocorrelation function of log volatility, |k/| is the absolute lag and v is
set to 1. Taking logs, |Bennedsen et al.| (2016) show that the variable of interest o can then be
estimated from

log(1 — p(h)) = ¢+ alog|h|+ep, h=A2A,...,mA (15)
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via OLS regression, where m denotes the bandwidth and A the step size. Note that we obtain

alpha from o = agl.

3.2.3 Volatility is Persistent

Volatility in financial markets has been shown to exhibit strong persistence as documented by
Andersen and Bollerslev (1998). This phenomenon is often referred to as long range dependence.
Formally, a time series is said to exhibit long range dependence if the following holds

lim p(h) = c,h ™" (16)
h—o0
where ¢, is a constant greater 0 and /3 is the rate of decay of the autocorrelation function.
Beran| (1994). Similar to the previous case of «, the expression can be found by taking K, to the
limit. When 5 € (0, 1) we see that

| otwtan = o a7

In other words the autocorrelation will never be zero, even for an infinite lag, hence the autocor-
relation function is not integrable.

Using this relationship Bennedsen et al. (2016)) again take logs in order to estimate [ using
OLS as follows

log(p(h)) = ¢ + blog|h|+ep, h=DMA2A,...,M'A (18)

Where, M < M’ sets the estimation window and A is again the step size. One can recover
B since 3 = —b. Further, |[Beran|(1994) shows that 5 can be expressed in terms of the Hurst
exponentas H =1 — g and thusasd =1+ §

3.3 Stochastic Processes

As alluded to earlier, in order to model persistence in volatility a process with fractal dimension
1 < d < 1.51s required as this implies non-randomness or dependence. However, modelling the
roughness requires d > 1.5 hence the two properties are in direct conflict with one another when
described by a single parameter such as d or H. Thus we require a stationary process which
not only incorporates both the roughness as well as the persistence but does so using separate
parameters. In the following we introduce three different stochastic processes. We evaluate these
as candidates for X; in the context of the stylised facts. Simulations of these processes can be
found in Figure

3.3.1 Brownian Motion

The baseline for a continuous stochastic process is a standard Brownian motion. Let A be a
constant time increment, then one can define Brownian motion as a process such that



t=nA
By =0, Bi=)Y e, ei~ii.dN(0,A) (19)
i=1A
Given that each e is independent of the others, it is not possible to model persistence through
this process. Further, given that there are equal probabilities of the next increment going up or
down, there are too few reversals to obtain a rough enough trajectory. In other words, its fractal
dimension d, is exactly equal to 1.5.

3.3.2 Fractional Brownian Motion

Similar to By, fractional Brownian motion, By (t) starts at zero and is a continuous-time Gaussian
process. Mandelbrot and Van Ness (1968) defined it as

o 1 ’ _GH-/2 _ (L \H-1/2 S ! _ OH120B(
Bult) = ey 0= 9" = (= an(e) + [ (0 sy >)(20)

where ['(«o) = fooo r*le ®dr and H denotes the Hurst index, see Dicker| (2004). The
main difference between By (t) and B; is that the increments of the former are not necessarily
independent. Thus By () is characterised by the following covariance function

E[By(t)Bu(s)] = S(Jt*" +|s[*"=[t — s[*") (21)

Setting the Hurst index to 1, the covariance function will be equal to s, and we have B,. This
is in line with our previous definition of d = 1.5 for B; and shows that By () is a generalisation
of B;. While By (t) is a promising candidate, allowing d € (1, 2) and thus for rougher or more
persistent processes than By, it does not allow for both as H is the sole parameter.

3.3.3 Brownian Semi-Stationary Motion

In order to model volatility and take into account both « and 3, Bennedsen et al.| (2016) define
specific kernels for a Brownian Semistationary motion. BSS was originally introduced by
Barndorff-Nielsen and Schmiegel (2009) as

t
BSS; = / g(t — s)vsdBg (22)

—0o0
where g(t — s) is the square integrable kernel function, and vy is an adapted covariance
stationary volatility term (see Barndorff-Nielsen et al. (2009)). It is worth noting that when v is
constant or deterministic .55, remains Gaussian. However when v, is taken to be a stochastic
process in itself, BS'S; becomes non-Gaussian.
Bennedsen et al.| (2016) introduce the gamma and power law kernel where the former models
short range dependence and the latter long range dependence. The gamma kernel is given by

gt —s) = (t — s)%e =9, (t—s) >0, o€ (—% %) : A e (0,00) (23)



where « is the roughness index and A the memory parameter. The theoretical ACF of the
gamma-kernel is defined as

a+1/2
(5)" KasiaAln)
(2)\)7204717-‘-

where K, (z) is the modified Bessel function of the third kind. This gamma BS'S process is
said to have short term memory as its ACF decays exponentially fast in the limit,

pgamma(h’) = (24)

p(h)~e Mhe, h — o0 (25)

The power law kernel is given by

Gt—s) = (t—s)" (14 (t—5)"7 (t—s)>0, ac (—%%) Y e (%oo) (26)

where 7 is the memory parameter. The ACF of the power law kernel is given by

[ g(@)g(x + |h|)dx
ower h 0 27
Ppouer(h) = B(2a+1 2y —1) @7)
where B(x,y) fo A )¥~1dt. The autocorrelation functions are included here as

they are required in order to forecast volatility later on.

It is now apparent why the BS'S process under a gamma or power law kernel should provide
significantly better forecasts. The kernels allow both roughness and persistence to enter separately
into a covariance stationary stochastic process. Therefore, we should expect models driven by a
BS'S process to perform better than if they were driven by By (t) or B;.

3.4 Simulation

The accurate and efficient simulation of stochastic processes is vital, especially when pricing
derivatives for which no closed form solution is available. In this case one has to resort to Monte
Carlo simulation to generate a large number of possible price paths, compute the path’s exercise
value and average these out in order to get the expected payoff of the derivative. Intuitively, the
more price paths the better the approximation will be. Hence, efficiency is a sought after attribute
in simulation methods.

Regarding the three processes introduced in the previous section, one can differentiate
between B; which has independent increments and By (t) as well as B.SS which have correlated
increments. When simulating dependent processes such as the latter two, we have to take into
account the correlation between increments. This can be done via either exact or approximate
estimation methods.

An example of an exact simulation method is the Cholesky decomposition, which entails
computing the process’s covariance matrix for the entire sample path using the theoretical
autocovariance function. This is computationally intensive since a sample path of length N
requires a covariance matrix of dimension N x N. A much more efficient method would be to

9



discretise the process in question and use Riemann sums to approximate each realization. In
the case of the By (t) and BSS process, efficiency can be further improved by realizing that
these are convolutions. Hence, using the Fast Fourier Transform (FFT) one can convert the
discretized process into the frequency domain, where a convolution in the time domain becomes
a multiplication, and once solved convert it back into the time domain using the inverse FFT.
Bennedsen et al. (2015)) further improved the accuracy of the Riemann approach by combining it
with exact simulation, which he calls the hybrid scheme. Bennedsen et al.| (2016) notice that in
the particular case that the kernel g(z) behaves as a power-law function near zero, as = — 0, the
Riemann sum fails to approximate the kernel. Hence using exact simulation for the first couple
of steps before switching to the Riemann sum approximation significantly improves the accuracy
while remaining much more efficient than the Cholesky decomposition.

Figure (3| shows some simulations of BM, fBM with different values of o and BSS compared
to the realised kernel of the FTSE MIB, as an example of the historical pattern of asset volatility.
It is easy to see that the volatility of the equity index is poorly modelled by standard Brownian
motion. By altering the Hurst parameter (reflected by the corresponding « value), fBM can
produce rougher simulations that are more realistic to the volatility of equity indices. The BSS
simulation is also able to replicate this roughness. In the Results section we will discuss in detail
how to calibrate these processes to a given time series, such as these equity indices.

4 Data Set

We downloaded daily realised variances for 21 equity indices from around the world from the
period January 2000 to May 2017. The full sample includes: S&P 500, FTSE 100, Nikkei
225, DAX, Russel 2000, All Ordinaries, DJIA, Nasdaq 100, CAC 40, Hang Seng, KOSPI
Composite, AEX Index, Swiss Market, IBEX 35, S&P CNX Nifty, IPC Mexico, Bovespa,
S&P/TSX Composite, Euro STOXX 50, FT Straits Times and FTSE MIB. Seventeen are large
cap indices, one small cap (Russell 2000) and three indices are a mixture of large and small-caps.
Eight indices are based on companies from Europe, four from the US, four from Asia, and the rest
are based on companies from Brazil, Canada, Australia and Mexico. In terms of methodology,
80% are calculated based on a market capitalisation weighting, while the others are computed
using a metric based on either price or trading volume.

The realised volatilities are based on 5-minute prices and were downloaded from the Oxford-
Man Institute’s Realized Library data, available at http://realized.oxford-man.ox.ac.uk/. For
each of these 21 indices the Oxford Man Institute’s Realised library records daily returns, daily
realised variances and daily realised kernels. We use the daily returns and the daily realised
kernel, introduced by [Barndorff-Nielsen et al. (2008)), as it has some robustness to the effects of
market micro-structure effects. See Heber et al.| (2009)) for more detail on how these measures
are computed. See Shephard and Sheppard| (2010) and Barndorff-Nielsen et al.| (2009) for more
background on the realised measures.

If the market was closed or the data was regarded as being of too low quality for that index the
database shows a missing value (NA), except for days when all the markets are simultaneously
closed, in which case the day is not recorded in the database. As a result, for example, Saturdays
are never present in the library. The full time period left us with 4521 observations, excluding a

10



number of missing values which varied across index. All missing values were dropped before
conducting our analysis. We also extracted index return data from the same source.

Figure 1 reports the basic summary statistics for the 21 stock indices in our sample. The
range of realised volatility varies quite considerably across indices over the full time period. For
example, the S&P 500 had a minimum daily volatility of 0.0002% and a maximum of 0.9313%
with a mean of 0.0111%, standard deviation of 0.0255%, a positive skewness of 15.05, and
a kurtosis of 426.84. The FTSE 100 volatility in the sample period ranged from 0.0002% to
0.3256%, with a mean of 0.0084%. We note that the skewness and the kurtosis of the series
imply some deviation from a standard Gaussian distribution. Some deviations from normality
also become apparent when we plot QQ plots of the series. Figure 2] shows the QQ Plot for the S
& P 500 series as an illustration.

5 Results

5.1 Estimation of the BSS Model

To fit the BSS model to the data described in Section {4, we must estimate the model parameters
introduced in section [3| namely the roughness parameters v and 3 and the memory parameter \.
In doing so we closely follow the procedures outlined in Bennedsen et al. (2016).

Recall that the roughness parameter « introduced in Equation can be estimated by taking
the natural logarithm on both sides, leading to the OLS regression Equation (15):

log(1 —p(h)) = c+alog|h|+en, h=A2A,...,mA (28)

where p(h) is the empirical autocorrelation function at lag h. For the step size we chose
A = 1 day such that each lag corresponds to one day for a bandwidth of m = [n'/3] ~ 17 days,
where n corresponds to the number of observations for each vector (ticker) under consideration
and [-] the ceiling.

We run the regression for each of the 21 tickers in our dataset and recover alpha using the
relationship & = (@ — 1)/2. Figure[d]a) shows the OLS regression results for the S&P 500 as
an illustration. The full set of alpha estimates are in Figure ] b). We find that there is some
substantial variation in « across the 21 indices. The smoothest ticker is the Swiss Market Index,
with an estimated alpha of —0.3268. The roughest series is the Australian All Ordinaries with an
estimated alpha of —0.4228, close to the roughest possible value of —0.5 (corresponding to a
Hurst index of 0). The average alpha estimate across the full cross section is —0.3706, indicating
that the volatility of equity indices is indeed rough.

We also investigated patterns across region of stock index, by type of index (i.e. large-cap,
small-cap or all), and by methodology of index. Figure [5]illustrates the estimated parameter
values by geographic region. There were no strong patterns by type or methodology. We did
notice, perhaps unsurprisingly, that stock indices from similar regions, particularly all those
indices covering US companies, reported similar estimate levels of roughness and persistence in
volatility over the 2000-2017 sample period analysed.

A natural question is whether the estimates of alpha change over time. In order to answer this
question we estimated alpha on a rolling basis for each security using a window of 60 consecutive
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trading days. Figure [6] shows the trailing 60 trading days alpha estimates for the S&P 500. We
find that alpha does substantially vary over time. The estimates broadly fall within the bound
(—0.5,—0.1). Recall that a value of alpha close to —0.5 implies roughness and —0.1 smoother.
In line with the findings in Bennedsen et al.| (2016), we observe several peaks of smootheness
that coincide with periods of market turmoil. For example there is a clear peak of alpha around
the Lehman collapse in 2008. We estimated the rolling variance for all the 21 equity indices and
find that the same pattern that volatility exhibits less roughness during market turmoil. This is
again in line with the findings of Bennedsen et al. (2016) and Gatheral et al. (2014). Of course
the periods of market turmoil can be different across markets. For example we noted a higher
alpha peak corresponding to the dotcom bubble of the early 2000s in the NASDAQ 100 when
compared to the other U.S. indices which have less focus on the technology sector.

Next we estimated the beta parameter over the entire sample to gauge the persistence of the
underlying series, see Figure 4{c). Recall that Equation allows us to estimate beta using
simple OLS. The findings reported in Figure 4] c) are estimated for M = m to M’ = m+ 9 (note
that m in our sample corresponds to 17). We obtain the highest beta of approximately 0.5 for
the Nikkei. We obtain the lowest reading for the TSX Composite index, which compares to an
average beta of 0.1996 for all 21 indices. These results differ from the findings in Bennedsen
et al.| (2016). The reason behind this difference can be found in the very large sensitivity of
Beta estimates with respect to the estimation window defined by M and M’, and of course
the underlying data. To illustrate the sensitivity of beta estimates we have calculated betas for
all 21 indices fixing M to 17 and varying M’ from 26 to 278 representing an autocorrelation
window ranging from 10 days to one year. Figure [/|shows our results. Indeed we find the beta
estimates to vary substantially and we confirm that beta estimates are highly sensitive to the
choice of estimation range M to M. Theory suggests the choice of large M. We repeated the
exercise for a window of M = 1to M = m ~ 17 and find results closer to the ones reported in
Bennedsen et al. (2016)). Here, the KOSPI Composite index exhibits the highest persistence with
an estimated beta of 0.0636. On the other extreme is the Bovespa index with a beta of 0.1942.
The overall sample beta mean is 0.1079, indicating a relatively high persistence overall.

Lastly we estimate the memory parameter, A for the gamma (and power) kernel BSS models.
Lambda can be estimated by a methods-of-moments (MoM) procedure. Following Bennedsen
et al.| (2016) we use the previously fitted alpha estimates from above to plug them into the
theoretical autocorrelation function for the gamma kernel in Equation (24)). The next step is to
match the theoretical and the empirical ACF and minimize the squared differences over lambdaE]
The results are shown in Figure |4/d). The results range from the lowest reading for the Swiss
Market Index, 0.0041, to a maximum of 0.0230 for the Bovespa, with a mean of 0.0101. Note
that a small lambda would imply a model with long memory. We find that the estimates of \ are
highly sensitive to the choice of the lag of the ACF, p(h)), in equation (I3)), which impacts on
the functionality of the BSS model (discussed in more detail in the next section).

Having estimated all the relevant parameters, we are now able to construct the model
calibrations for the fBM and gamma-kernel BSS specifications. For example Figure [§] shows
our results for the estimated values of the S&P 500 using 500 i.i.d. drafts of a multivariate
Gaussian vector with mean zero and covariance matrix as described in |[Bennedsen et al.| (2015)).

2This has been done using the autocorr and fmincon commands in matlab
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The Truncated BSS (TBSS) model and the BSS trajectories shown in Figure 8| make use of
a modelling technique, referred to as hybrid scheme introduced in Bennedsen et al. (2015).
The hybrid scheme discretises the stochastic integral in the time domain and approximates the
first kappa steps by a power function near zero and a standard Riemann approximation after.
The TBSS process is an extension to the BSS process with applications in rough Bergomi
models. The TBSS process allows us to directly compare the trajectories generated with the
Hybrid Scheme with those of the Riemann approximations. The red lines in the TBSS and BSS
Hybrid panels represent approximations setting kappa to 3. To compare the persistence fit of
the BSS process we compared the empirical autocorrelation function with the autocorrelation
function from the fitted processes. Figure [J]shows the results for the S&P 500. The BSS model
satisfyingly replicates the autocorrelation pattern of the empirical ACF.

More important than simulating the processes with fitted parameters, we are now able to
conduct forecasts using the BSS model.

5.2 Forecasting with BSS

In this section we use the BSS process to forecast realised variance and then evaluate the forecast
accuracy of the model and compare it against a series of benchmarks. We do this in a few steps.
First, we conduct an in-sample forecast. We use the entire in-sample dataset to estimate the
parameter for the models. Second, we use those parameters to forecast the realised variance
h steps ahead. Finally, we compare the Mean Square Error (MSE) and Quasi-likelihood (QL)
against a set of benchmark models. Let us discuss these steps in turn before reporting the results.

Firstly, to forecast with the BSS process we assume Gaussianity of the processes and
follow the steps taken in Bennedsen et al.| (2016). In particular we rely on the fact that for a
zero-mean Gaussian vector (Ty.p, Ty, Ty_1, ..., xt_m)T the distribution of z; conditionally on
(Toshs Tty Ty 1y o0y Tpn) T = a € R™TL s

Xt+h|[xt7 L1450y xt*m)T = CL] ~ N(,uu E2> (29)

where =I5 - F2_21 -a = Z - a, and I'ys is the correlation matrix of the vector a and

Lio = [Py ipaes Propnaiois - Propnsi—m)» Where the correlations are obtained from the theoretical
correlation functions given in equation (24) and (27). The variance term is given by =2 =
Var(z;) * (1 — T'120'55 T'ay) where, T'y; = I'%,.

In the forecasting exercise we need a window of m previous data points on which we can
then compute an h step ahead forecast. The m is a rolling window and the parameters (e.g. &, 5\)
for the model are computed from the full data in ex-ante.

In order to retrieve the BSS process from our dataset we first take the square root to arrive at
volatility. Next we drop empty observations to remain consistent with the estimation of model
parameters, recall that we construct a series of consecutive trading days. For any index, this
leaves us with the vector for variances, o. Recall the relation between volatility and BSS-process
as stated in Equation (2). Thus, to recover the realised BSS-process, { X}, (1,..1y> e first take

3To implement this matrix multiplication in practice we use the ’fliplr’ command in Matlab on the I")12 matrix to
ensure the correct time order of correlation lags.
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the natural logarithm and then de-mean the vector as shown below:

In oy .
Ino = o, X = {I—Tii'} Ino

Inor

where 4 denotes the unit vector of size 7', 7’ its transpose and I the identity matrix. The result
follows from 1/7T Zthl Ino, = 1/T Zthl Iné+ X, =Iné+1/T Zthl X; = In¢ and zero
mean property of the BSS process. ﬂ

From this new vector X we feed the rolling window a. Note that the functional form of
volatility given in Equation (2), requires us to forecast a log-normal distributed process. To
account for this we make use of the moment generating function and obtain our forecasts
according to:

1
Elexp(X¢ial|Fi)] = exp (E[XHA\}"] + §Var[Xt+A|}"]> (30)

This term is then approximated by inserting 1 and =? from above. Pre-multiplying the h-step
ahead forecast vector obtained in this fashion by ¢ from the de-meaning step, we get the forecast
vector for realised volatility .

Once we have the model estimated, the second step is to forecast ahead with it. We forecast
one-step ahead (i.e. h=1) recursively, re-estimating the model each time based on the new
updated information set. We start forecasting after 200 periods of observations.

The final step of the forecasting methodology is to compute the loss functions. Here, we use
two Patton class loss functionsﬂ the Mean Square Error (MSE), defined as

MSE : L(67,07, 1) = (67 — 07y _1)" €1Y)
and the Quasi Likelihood (QL) loss function, defined as:

o2 o2
- — log— R (32)
tjt—1 tjt—1

QL : L5/, 07y 1) =

We identified some calibration issues stemming from the Method of Moments (MoM)
estimation of \ that impact on our ability to forecast with the Gamma-BSS model. After
thorough exploration of the Bennedsen et al. (2016) methodology we noticed forecast errors
exploding for some series and isolated \ estimation as the driving force. To further evaluate
the problem we calculated the MSEs for a range of A from 0.0005 to 0.05 in steps of 0.0001,
see Figure [T} The peak in the first plot shows the critical range around which forecast errors
explode. Plot 2 shows the MSE on a logarithmic scale. We find the left hand side of the peak
does not contain a global minimum. By zooming in on the right hand side, as shown in plot
3, we find the global minimum (i.e. the point with lowest MSE). Note that this value for \ is
far from the minimum identified by MoM. Our findings suggest MoM might not be suited for
optimal forecasting results.

“We ran Jarque—Bera normality tests on the realised X process for the 21 series and reject the null of normality in
all cases except one.
JPatton| (2011) derives a class of loss functions that can be used to rank volatility models.
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5.3 Forecasting Performance

After estimating each model from the in-sample data, one-step ahead conditional volatility
forecasts are produced for the out-of-sample period. The A estimation issue, described above,
allows us to produce one-step ahead forecasts for six indices, namely: S&P 500; NASDAQ 100;
Bovespa; AEX; Swiss Market; FTSE MIB. These six provide a decent geographical coverage
of major equity markets. Figure [I0] shows the results for the forecasting exercise. The BSS
forecast performance appears to be very good for these indices, with one-step ahead forecasted
values very close to the realised values. To evaluate this forecast performance in more depth we
introduce three benchmark models of volatility.

e Rolling Volatility: calculated as the standard deviation of the returns of the last 200
consecutive trading days

Orolling t+1 = std(Returns(t — 200 : t)) (33)

e Exponential Weighted Moving Average (EWMA): with a value of A = 0.94. We take the
square root of a2, 4 to obtain volatility.

OCowararsr = A 0swaag + (1= X) - (Returnsy) (34)

e L.og HAR model specification: where next period’s log volatility is based on a weighted
average of the average log volatility over the last day, week and month. We take the
exponent of 0,41 4R to obtain volatility.

OLogHARt+1 = Bo + B1 - 0pavi—1 + B2 - oweek -1 + B3 - omontH -1 (35)

The first two provide more traditional benchmarks. The third is a more recent state-of-the art
volatility model that should be harder to beat.

Table [I] reports the MSE and QL losses of the three benchmarks and the BSS model for
the one-step and ten-step ahead forecasts of the six indices. Looking first at the MSEs for the
one-step ahead forecast, BSS outperforms all three benchmarks for the Swiss Market index. It
outperforms the rolling volatility and EWMA, but not the Log-HAR, for the S& P 500, Nasdaq
100 and the Bovespa. The BSS has a lower MSE than the rolling variances, but a higher MSE
than the Log-HAR and very similar MSE to the EWMA, for the FTSE MIB and AEX. This
pattern is repeated if we consider the QL loss function. In short the BSS is either the best
performer or nearly as good as the Log-HAR specification. For the ten-step ahead forecast, the
BSS outperforms all three benchmarks under both the MSE and the QL loss function for five of
the six indices.

Next, we investigate if this BSS forecast out-performance versus some of benchmarks is
statistically significant. Diebold and Mariano| (1995)) introduce a test to assess if the forecasting
ability of two series is statistically different. The test enables us to see if model out-performance
against benchmarks is statistically significant. The null hypothesis is that two forecasting
strategies have the same predictive ability. Table 2 reports the DM-statistics and the corresponding
p-values. For the one-step ahead forecast, the BSS statistically outperforms the rolling volatility
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model for all six indices at a 5% significance level. BSS statistically outperforms the EWMA for
the Nasdaq, Swiss Market Index and Bovespa indices and the Log-HAR in the case of Swiss
Market Index. However, the Log-HAR is statistically better than BSS for the other five indices.
For the ten-step ahead forecast the BSS outperformance is closer to the Log-HAR benchmark
and under the MSE loss function it is significantly better for AEX, Swiss Market Index and
FTSE MIB. Under the QL loss function the BSS significantly outperforms for all benchmarks
for all series.

6 Conclusion

This project confirms the findings of |Gatheral et al. (2014)) and Bennedsen et al.| (2016) that
volatility is indeed both rough and persistent across a wide range of equity indices. We have
explored the advantage of using a Brownian Semi-Stationary (BSS) process to model volatility
enabling the user to calibrate both stylised facts in contrast to previous generations of fractal
processes, like Fractional Brownian Motion. We have successfully implemented simulation
methods so that a BSS process can be incorporated within a continuous time asset pricing
equation to price options and other exotic derivatives. We then calibrated the parameters for the
BSS model using the realised kernel of 21 equity indices. Our parameter estimates confirm the
expected roughness and persistence in the series. The parameter for roughness, o, was quite
stable across the cross-section of indices, but fluctuated over time. « averaged -0.37 and ranged
from —0.33 to —0.42, implying much more roughness than the & = 0 implied by Standard
Brownian Motion. Estimates of the long memory parameter, A, were less stable, ranging from
0.0041 to 0.0230. We identify an issue when using MoM estimation that suggests MoM may
be sub-optimal for BSS-Gamma forecasting. We forecast with six indices that cover a broad
geographical spread and have stable lambda estimates. For the one-step ahead forecast we find
that the BSS model outperformed two of our three benchmarks consistently under both MSE
and QL loss functions. The BSS beat the Log-HAR benchmark in the case of the index with the
longest memory, while it was slightly worse for the other five indices. For the ten-step ahead
forecast, under the MSE loss function, the BSS model outperformed all benchmarks consistently
for five out of six indices. Under the QL loss function the BSS outperforms all benchmarks, and
this outperformance is always statistically significant.

Areas for further research would include investigating the forecasting accuracy of the BSS
Power Kernel using a wider range of asset class, such as commodities, real estate funds and
foreign exchange rates. Further robustness checks could test the performance of BSS against
the family of fractional volatility models. It would also be interesting to further explore the
relationship of £ and its link with the variance swap curve.
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8 Appendix

Figure 1: Descriptive Statistics

Stock Index Min Max Quartile1l  Quartile3  Mean  Median  Stdev Skewness  Kurtosis Obs NAs
S&P 500( 0.0002% 0.9313%  0.0026% 0.0109%  0.0111%  0.0052%  0.0255% 15.05 426.84 4521 198

FTSE 100| 0.0004% 0.3256% 0.0022% 0.0088% 0.0084%  0.0041%  0.0152% 7.92 101.26 4521 175

Nikkei 225| 0.0004% 0.3836% 0.0039% 0.0125% 0.0114%  0.0070%  0.0190% 8.66 110.24 4521 328

DAX]| 0.0003% 0.6432% 0.0049% 0.0180% 0.0177%  0.0093%  0.0314% 8.44 114.73 4521 141

Russel 2000| 0.0000% 0.6425%  0.0032% 0.0104%  0.0108%  0.0055%  0.0217% 10.93 213.82 4521 195

All Ordinaries| 0.0001% 0.1556%  0.0015% 0.0051%  0.0049%  0.0026%  0.0083% 7.46 84.95 4521 197
DJIA| 0.0002% 0.9126%  0.0027% 0.0103%  0.0107% 0.0051%  0.0255% 15.15 407.24 4521 195

Nasdaq 100 0.0000%  0.6669% 0.0029% 0.0137% 0.0135%  0.0057%  0.0262% 8.97 146.32 4521 192

CAC 40| 0.0004% 0.4551% 0.0043% 0.0161% 0.0145%  0.0083%  0.0231% 7.67 93.78 4521 114

Hang Seng| 0.0004% 0.4461%  0.0032% 0.0092%  0.0088%  0.0052%  0.0162% 14.04 300.46 4521 527
KOSPI Composite | 0.0004% 0.6479%  0.0029% 0.0148%  0.0133%  0.0067%  0.0238% 9.78 181.06 4521 261
AEX Index| 0.0003% 0.3962% 0.0033% 0.0132% 0.0126%  0.0063%  0.0217% 6.52 66.01 4521 115

Swiss Market| 0.0007% 0.2797% 0.0026% 0.0082% 0.0084%  0.0042%  0.0145% 7.16 81.32 4521 189
IBEX 35| 0.0004% 0.4766% 0.0048% 0.0177% 0.0150%  0.0100%  0.0213% 8.04 110.57 4521 149

S&P CNX Nifty| 0.0003% 1.0108%  0.0041% 0.0143%  0.0148%  0.0073%  0.0328% 13.86 313.12 4521 775
IPC Mexico| 0.0003% 0.3010%  0.0024% 0.0069%  0.0066%  0.0038%  0.0112% 10.53 193.04 4521 194
Bovespa| 0.0008% 0.8364%  0.0098% 0.0249%  0.0238% 0.0154%  0.0384% 9.44 131.82 4521 289
S&P/TSX Composite | 0.0000%  0.3545% 0.0014% 0.0050% 0.0056%  0.0024%  0.0144% 10.99 175.26 4521 781
Euro STOXX 50| 0.0000% 1.0922% 0.0047% 0.0174% 0.0165%  0.0089%  0.0320% 13.65 342.42 4521 138
FT Straits Times | 0.0006% 0.2773%  0.0021% 0.0064%  0.0057%  0.0035%  0.0087% 11.98 280.22 4521 642
FTSE MIB| 0.0003% 0.4304%  0.0037% 0.0148%  0.0129%  0.0074%  0.0199% 7.84 107.97 4521 157
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Figure 2: QQ Plot for S&P 500
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Figure 3: Simulated Processes

FTSE MIB realised kernel
T T T

10
51 J
0 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
) Standard Brownian Motion alpha =0
T T T T T
0 J
2 1 1 1 1 1 1 1 1 1
0 50 100 150 200 250 300 350 400 450 500
s Fractional Brownian Motion alpha =-0.15
T T T T T
0 MWMWWMW
5 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500
s Fractional Brownian Motion alpha =-0.49
T T T T T
0 A
-5 | | | | | | | | |
0 50 100 150 200 250 300 350 400 450 500

0 50 100 150 200 250 300 350 400 450 500

20



Figure 4: Estimated Alphas
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Figure 5: Estimated Alpha and Betas by geographical region of Stock Index
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Figure 6: Rolling Alpha S&P 500
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Figure 7: Sensitivity Analysis Of the Beta Estimation
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Figure 8: Estimated Processes: S&P 500
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The red lines for the TBSS and BSS processes show the estimation results for k = 2. The
standard deviation for the processes has been standardized to one. The deviation between TBSS

and BSS paths results from required re-sampling the random vector.
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Figure 10: Forecast Performance
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Figure 11: Lambda Instability Analysis for the S&P 500
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Table 1: Forecast Performance MSE and QL

Step Ahead =1 Step Ahead = 10
Index Metric | Roll Var | EWMA | Log-HAR | BSS | Roll Var | EWMA | Log-HAR | BSS
S&P 500 | MSE 10° | 3.3097 | 1.6965 1.1210 | 1.5027 | 3.6087 | 2.5157 1.9031 1.8360
QL 0.1130 | 0.0647 0.0470 | 0.0620 | 2.1791 | 0.0910 0.0831 | 0.0760
Nadaq | MSE 10° | 3.2007 | 1.8984 09613 | 1.5115 | 3.4306 | 2.5622 1.5480 | 1.4946
QL 0.1048 | 0.0621 0.0382 | 0.0532 | 2.1275 | 0.0811 0.0666 | 0.0621
AEX | MSE 10° | 2.8307 | 1.4024 1.1152 | 1.4125 | 3.0980 | 2.3604 1.9472 | 1.8069
QL 0.0929 | 0.0496 0.0413 | 0.0563 | 2.3901 | 0.0804 0.0724 | 0.0660
SMI MSE 10° | 1.7776 | 0.9667 0.6381 | 0.5116 | 1.9616 | 1.6739 1.2159 | 1.0790
QL 0.0781 | 0.0407 0.0272 | 0.0221 | 2.4126 | 0.0697 0.0533 | 0.0481
Bovespa | MSE 10° | 5.2725 | 3.1314 2.1369 | 2.5650 | 5.6765 | 4.4672 3.1737 | 3.2284
QL 0.0821 | 0.0522 0.0415 | 0.0496 | 2.3689 | 0.0723 0.0612 | 0.0571
FTSE | MSE 10° | 2.9630 | 1.6479 1.1311 1.8223 | 3.1910 | 2.5347 1.9233 | 1.7963
MIB QL 0.0961 | 0.0552 0.0410 | 0.0659 | 2.2655 | 0.0803 0.0700 | 0.0658
Table 2: Diebold and Mariano|(1995) test results Benchmarks vs. BSS forecast errors
Step Ahead =1 Step Ahead = 10
MSE QL MSE QL
Index | Roll Var | EWMA | Log-HAR | Roll Var | EWMA | Log-HAR | Roll Var | EWMA | Log-HAR | Roll Var | EWMA | Log-HAR
SP 500 | 10.6881 | 1.4007 -29181 | 17.9422 | 1.3288 -7.9014 19.8982 | 6.9068 1.0980 | 22.2359 | 9.2236 4.5126
(0.0000) | (0.0807) | (0.0018) | (0.0000) | (0.0920) | (0.0000) | (0.0000) | (0.0000) | (0.1361) | (0.0000) | (0.0000) | (0.0000)
Nasdaq | 11.8380 | 2.8516 -4.4901 | 21.9667 | 5.0178 -9.3689 | 23.1087 | 10.2427 1.1575 26.0394 | 12.3021 3.4256
(0.0000) | (0.0022) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.1235) | (0.0000) | (0.0000) | (0.0003)
AEX 12.5481 | -0.1349 | -3.7990 | 13.3000 | -3.5122 | -8.2258 | 21.6140 | 9.0583 3.0580 | 21.0672 | 10.0088 | 5.1308
(0.0000) | (0.4463) | (0.0001) | (0.0000) | (0.0002) | (0.0000) | (0.0000) | (0.0000) | (0.0011) | (0.0000) | (0.0000) | (0.0000)
SMI 19.9699 | 14.5622 | 5.4946 | 28.9355 | 20.6586 | 6.6659 24.2836 | 13.5029 | 4.9721 25.4787 | 17.9922 | 7.0082
(0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | (0.0000)
Bovespa | 14.0738 | 4.5146 -3.6657 | 16.0881 | 1.7294 -5.5111 19.1422 | 7.3387 -0.4571 | 20.4261 | 11.1119 | 3.3737
(0.0000) | (0.0000) | (0.0001) | (0.0000) | (0.0419) | (0.0000) | (0.0000) | (0.0000) | (0.3238) | (0.0000) | (0.0000) | (0.0004)
FTSE 7.9916 | -1.4069 | -5.3118 | 10.2859 | -4.6379 | -10.9580 | 23.8457 | 12.3160 | 3.1201 20.3776 | 10.0739 | 3.6994
MIB (0.0000) | (0.0797) | (0.0000) | (0.0000) | (0.0000) | (0.0000) | ’(0.0000) | (0.0000) | (0.0009) | (0.0000) | (0.0000) | (0.0001)

Test statistics, p-values in parenthesis. Null hypothesis is no difference between forecast models.
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