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Abstract

We identify contemporaneous and Granger-causal linkages between the 86 biggest

companies, representing both the financial and real sectors, of the Eurozone economy

that serve as paths of shock transmission. Network analysis lends itself very natu-

rally to the study of systemic risk due to its preoccupation with interconnections and

notions of centrality. We employ an estimation methodology introduced by Barigozzi

and Brownlees (2018) using market data for daily volatilities from the Eurostoxx in-

dex. Our results are in line with the existing literature - the banking sector is found to

be highly interconnected and responsible for most Granger-network spillovers. More-

over, only a small subset of firms appear to Granger-cause other residual volatilities,

providing support for regulators’ targeting of Systemically Important Financial Insti-

tutions.

Keywords – Networks, Granger-causation, NETS algorithm, Systemic risk, SIFIs
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1 Introduction

This paper offers empirical insights into the cross-sectional dimension of Eurozone sys-

temic risk. While largely agnostic regarding the theory of how contagion is generated,

we focus on delivering a practical empirical measurement of systemic risk and paths of

contagion that can be of use to Eurozone regulators. This is achieved firstly by identi-

fying which Eurozone financial institutions make the greatest contributions to systemic

risk and could thus be considered Systemically Important Financial Institutions (SIFIs)2.

Secondly, we track the channels of contagion both within the financial system and running

from the financial system to the real economy. The cross-sectional dimension of systemic

risk reflects the distribution of volatility in the financial system which may be a function

of institutional size and leverage, as well as the concentration of an institution’s activities

and their interconnectedness. Emphasized throughout is our belief that network analysis

is an appropriate tool for capturing systemic risk and its spread - particularly appealing

feature is that a shock to a central node can have potentially vast rippling effects. Fur-

thermore, going beyond banks and other financials to include non-financial firms sheds

light on the critical issue of how contagion spreads from the financial system to the real

economy.

This modern preoccupation with how contagion spreads to the real economy is inherited

from the Global Financial Crisis of 2008-2009 following which there was a widespread

acknowledgement that regulators had focused too narrowly on the idiosyncratic risk of

individual financial institutions. Micro-prudential regulators imposed minimum capital

requirements on firms in the belief that if each institution in the financial system is

sound, the financial system itself ought also to be resilient. This “fallacy of composition”

overlooked the important concept of systemic risk and that, in a time of crisis, there

exist strong financial system externalities which create financial instability and negative
2SIFIs are those firms described by the phrases “Too Big To Fail” or “Too Connected To Fail”. In the

words of global regulators, “SIFIs are financial institutions whose distress or disorderly failure, because

of their size, complexity and systemic interconnectedness, would cause significant disruption to the wider

financial system and economic activity”, Financial Stability Board (2011).
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spillovers to the real sector.3 Unless the external costs of systemic risk are internalised

by each financial institution, the institution will have the incentive to take risks that are

borne by all. A post-crisis consensus emerged that greater efforts were needed to contain

systemic risk.

Given this recent regulatory pivot, one would think there is a universally-accepted defi-

nition of systemic risk, but it remains elusive.4 Among the numerous proposals, a crucial

distinction emerges. Need systemic risk only threaten the smooth operation of the finan-

cial system or should a definition of systemic risk explicitly require negative spillovers

to the real economy? By the inclusion of firms representing the real economy alongside

banking firms, this paper is explicitly in the spirit of the latter. Where previous research

has focused exclusively on interconnections within the banking system, this paper inves-

tigates not only the transmission of risk between different financial institutions but also

the spreading of risk to and from firms in the real economy.

The rest of the paper is structured as follows. Section 2 gives a brief overview of relevant

literature and places our contribution in proper context. A description of the data, estima-

tion approach and parameter-selection follows in Section 3. Section 4 presents the results

and Section 5 places the findings in context and offers a discussion of their implications.

2 Literature Review

Given the ambiguity surrounding systemic risk the literature has proposed many different

approaches to quantifying the concept. To give an illustrative example - Bisias et al.

(2012) provide a detailed taxonomy of 31 different measures while Silva et al. (2017)

review more than 260 articles in order to analyse this developing field of study.

According to Freixas et al. (2015) systemic risk measures can be divided into two groups
3Think here of the fire sales, panics, credit crunches described in detail in Freixas, Laevan and Peydro

(2015).
4Economists and regulators analyzing systemic risk are fond of invoking the logic of Justice Potter

Stewart: they are unsure how exactly to define systemic risk, but they know it when they see it. This is

an obviously unsatisfying approach when dealing with such an important concept.
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depending on the type of input information. "Fundamental approaches" rely on balance

sheet or credit register data and include, among many others, network models of interbank

contagion based on inter-institution exposure which are recommended by IMF (2009) as

a tool to asses systemic linkages. However, the main shortcoming of the fundamental

approach is the ownership and constrained accessibility of the necessary information.

Therefore researchers not affiliated with central banks or other regulatory authorities

resort to using a "market data approach", inferring interconnections from the easily ob-

served empirical distribution of returns – this methodology is adopted here. Using market

data requires an assumption that prices reflect all the available information, implying

that market-based measures could perfectly quantify systemic risk. Thus it is frequently

flagged that deviations from market efficiency (e.g. arising from the government bailouts

of financial institutions) may lead to mis-measurements. Nevertheless, the market view

of systemic risk quantification prevails in the recent literature.

Following Diebold and Yilmaz (2014) systemic risk measures can be classified based on

the features they intend to capture. The first group focuses on systemic risk exposure,

conditioning firm events on market distress. This group includes, for example, the sys-

temic expected shortfall proposed by Acharya et al. (2017) or SRISK implemented by

Brownlees and Engle (2017). The second group deals with the systemic risk contribution,

conditioning market events on the firm distress. The most widely-applied measures of

this kind are CoVaR and ∆CoVaR developed by Adrian and Brunnermeier (2016). The

third group is comprised of studies of systemic interlinkages among institutions and this

is the part of literature to which we make a direct contribution.

The vast majority of empirical studies on interconnectedness concentrate on the US finan-

cial sector. Billio et al. (2012) apply principal components analysis and Granger-causality

networks to the monthly returns of hedge funds, banks, broker/dealers, and insurance

companies. All four industries became highly interrelated during the first decade of 2000s,

which increased the level of systemic risk. Moreover, they find that banks play a much

more important role in transmitting shocks than other financial institutions. Similarly,

Härdle et al. (2016) - focusing on the tail event driven interconnectedness - show that on
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average banks dominate the outgoing links while insurers spread less risk than other finan-

cial entities. Diebold and Yielmaz (2014) propose several measures built from variance

decompositions and apply them to daily volatilities of stock returns of 13 major financial

institutions. They find especially tight links between companies that experienced the

most severe difficulties during the 2007-2008 financial crisis.

Barigozzi and Brownlees (2018) examine the connectedness not only within the financial

sector but across 90 US bluechips from different industries. A LASSO-based algorithm

identifying Granger-causality linkages, contemporaneous and long-run partial correlation

linkages is applied to daily volatilities of stock returns. They find that financial institutions

have the highest degree of interconnectedness and show that entities heavily involved in

the 2007-2008 financial crisis are associated with the largest spillover effects.

Hitherto, studies focusing on Europe have been devoted solely to the banking sector and

hence do not capture transmission of shocks to the real economy. Hautsch et al. (2014)

employ a high-dimensional linear model based on Value-at-Risk (VaR) measure using

both market and fundamental data for 20 banks, which reveals the dynamic nature of

interconnectedness in the European financial system. Betz et al. (2016) apply a similar

methodology to 51 European banks and 17 sovereigns showing that fragmentation of

the European financial sector has peaked. Moreover, banks from countries participating

in the EU-IMF programme exhibit the greatest systemic risk contributions during the

sovereign debt crisis while the same holds for global banks during the 2007-2008 financial

crisis. Covi et al. (2018) estimate the network of banks in the Euro area based on large

exposure data, revealing a core-periphery structure in the interbank network. Moreover,

they show that there is a value for policymakers associated with network-based measures

as in general they highly correlate with simple size-based interconnectedness indicators

but for some banks these quantifications deviate considerably.
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3 Data and Methodology

This paper adopts the methodology introduced by Barigozzi and Brownlees (2018) to

analyse interconnectedness in the Eurozone using a panel of volatility measures. Use of

this LASSO algorithm (called nets), having factored out market wide as well as sectoral

and country specific volatility factors, allows us to estimate contemporaneous correlations

and predictive Granger relations.

Daily stock market prices for major Eurozone firms (or bluechips) are retrieved from the

Eurostoxx index. More precisely, we take the 100 largest firms ordered by total equity and

we remove 14 firms due to missing values5. Thus, we consider a panel of 86 Eurozone firms

across 10 different industry sectors and 10 different countries. The list of bluechips with

corresponding country and industry sector can be found in Table 1. By the very nature

of the Eurostoxx index, banks and industrial firms are overrepresented in our sample, as

are French and German companies. The sample spans from May 1st, 2008 to April 15th,

2018 which corresponds to 2393 trading days. With a sample of 86 firms we are in line

with Barigozzi and Brownlees (2018), who use 90 US companies.

As a first step we measure volatility for each firm i on day t. This is done using the

high-low range estimator introduced by Parkinson (1980):

σ̃2
it = 0.361 · (ρhit − ρlit)2, (1)

where ρhit and ρlit denote the maximum and minimum log price of stock i on day t, respec-

tively. Brownlees and Gallo (2010) show that while more complex measures of volatility

have been proposed in recent years, simpler estimates such as that of Parkinson (1980) can

have a similar or better performance. To analyse volatility interconnectedness conditional

on market, sector, and country specific factors, a so-called factor structure in volatility

is needed. In the literature a wide range of evidence has been found that this structure

exists (see Barigozzi et al., 2014; Luciani and Veredas, 2015).
5The missing values are mainly due to the fact that firms were listed in the stock market at a later

stage during the sample period. In some specific cases, the volatility was 0 due to a firm not trading. In

that case, the volatility is set to the previous value.
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Thus, as a second step we analyse the residuals of the following regression:

log σ̃2
it = β0 + β1 log σ̃mt + β2 log σ̃st + β3 log σ̃ct + zit (2)

where σ̃mt is the volatility of the Eurostoxx market, σ̃st the volatility of the sectoral index

s, and σ̃ct corresponds to the volatility of the country index c. The market, sectoral

and country factor volatilities are measured with the high-low range estimator introduced

earlier. We apply this method to the sectoral indices of the Eurostoxx and for the country

factor we use the most relevant benchmark index in each country. Thus, estimating the

model by least squares factors out the market, sector and country factor volatilities,

leaving the residuals zit.

Finally, having obtained the volatility residuals as a large time series panel, we model

them as a VAR and apply the LASSO-based nets algorithm proposed by Barigozzi and

Brownlees (2018), which implies regressing each residual zit on other contemporaneous

residuals and their p lags:

zit =
∑
h=1
h6=i

γihzht +

p∑
k=1

n∑
j=1

βijkzjt−k + εit (3)

The first term of the equation represents the contemporaneous network, which can be

visualized as an undirected graph. Thus, if two firms are connected, their residual volatil-

ities are driven by similar shocks. The second term represents the granger causality links,

which can be visualized as directed graphs. A significant β means that a shift in the

volatility of one firm granger causes a shift in the volatility of another firm. Therefore, it

serves as a toolkit for analyzing spillover effects in the economy. Note that our algorithm

is based on a LASSO-type estimation in the context of ordinary least squares. Thus, the

loss function that we seek to minimize allows for two shrinkage parameters λi:

min
γih,βijk

{|zit −
∑
h=1
h6=i

γihzht −
p∑

k=1

n∑
j=1

βijkzjt−k|2 + λ1
∑
h=1
h6=i

|γih|+ λ2

p∑
k=1

n∑
j=1

|βijk|} (4)

Therefore, we choose two λi, based on in-sample cross-validation to minimize the Mean

Squared Error (MSE). Moreover, we choose the number of lags p based on the sample

autocorrelation of the residuals zit.
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Thus, a brief discussion of parameters is an important preface to the results presented

in the following section. Having estimated regression (2) for each firm i, we obtained

the residuals zit. An in-sample cross validation minimizing the Mean Squared Error was

carried out to find the optimal penalty parameters λi. The selection process included

mainly Grid search and optimizing the Akaike information criterion (AIC) of the model,

eventually arriving at the values 7 and 24, respectively. This process was complemented

with out-of-sample forecasting: after splitting our data 80-20%, we forecast several vari-

ables with different parameters to reduce the forecast error and avoid overfitting of the

data. Our final parameters are slightly higher than in Barigozzi and Brownlees (2018),

but the main patterns are robust to this result; the algorithm simply sets more estimates

to be exactly zero. Moreover, by looking at Figure 1 the residuals exhibit few order one

autocorrelation which lead us to the conclusion to set the lag parameter p equal to one.

With the choice and values of our parameters for the LASSO algorithm we are entirely

consistent with Barigozzi and Brownlees (2018).

4 Results

In this section, using the specification presented in Section 3, we first present the descrip-

tive statistics of our panel of residuals zit. Second, we investigate intra- and inter-sectoral

correlations as well as sample autocorrelations. Third, we focus on the main findings of

the estimated network after applying the nets algorithm, mainly Granger and contempo-

raneous linkages between sectors and countries.

In Table 2 we display the main statistics of the residuals zit and the R2 of each factor of

the regressions, grouped by sector. All of the volatilities display leptokurtic distributions,

i.e. the tails are fatter than in the normal distribution. This implies that, especially

in the case of banks, there is an increased likelihood of days with high volatility. In

general, the sectoral index accounts for most variation in the volatilities, followed by the

country index. Clearly the volatility of each firm is highly dependent on their sector.

We can also infer that the country market is still an important source of risk for the

top European countries, more than the whole European-wide index. As expected, all of
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the autocorrelations decay with time, but it is interesting to note higher persistence in

the banking and real estate sectors. This becomes even more clear when looking at the

right hand side of Figure 1. Moreover, in the residuals we observe higher intra-sectoral

correlation than inter-sectoral correlation, and we expect this pattern to be transmitted

to the networks. Billio et al. (2012) is one of many papers which finds that the banking

sector exhibits very high intra-sectoral correlation. Our results show that intra-sectoral

correlation is highest in the banking, industrials and technology sector. These correlations

suggest that the banking sector is particularly connected with industrial, real estate and

insurance firms.

The most important firms in both Granger and contemporaneous networks, based on the

number of connections (degree), are displayed in Table 3. In both cases, the top three

is comprised of financial firms (including banks, insurers and real estate companies).

Concomitant with the size of the economies, France and Germany play major roles in the

contemporaneous network, although specific firms of the periphery also show up in top

positions, especially in the Granger network. Interestingly, at the Granger level we find a

prominent role of AIBG, a periphery-country bank that received a bailout. In our network

the "troubled" bank AIBG plays an analogous role to the "troubled" insurer AIG in the

Barigozzi and Brownlees (2018) network for the US. The other top banks in the Granger

network, KBC, CABK and UBI either also received a cash injection from a government

or acquired other distressed institutions. In fact, the four most prominent banks in our

Granger network could all be called "crisis" banks.

The distributions of the degree (absolute number of connections) and betweenness (mea-

sure of centrality) in both networks are shown in Figure 3. We find on average a higher

interconnectedness at the contemporaneous level for both measures. Interestingly, there

is a high concentration of firms with zero betweenness in the Granger network, while in

the contemporaneous one they tend to display at least some connection. While consistent

with Barigozzi and Brownlees (2018), this result is also intuitive, as seen in the decreasing

autocorrelation of the volatilities: they are more connected at the same t, while at a one-

year lag fewer companies remain connected. Firms with high betweenness are firms for

which usually the intra-sectoral correlation is high, such as technology and industrials, and
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of course banks. For instance, a firm with highest betweenness at the contemporaneous

level is not the top connected bank (AIBG) but a technology firm (ORAN). However, this

is mainly due to the strong intra-sectoral correlation in the technology sector, which stems

from the similar structure of the firms. Moreover, in Figure 4 we can see the histograms of

the non-zero coefficients for both networks. Especially in the contemporaneous case they

tend to be positive, so residual volatilities move in the same direction. More strikingly,

the Granger network shows a few positive and large coefficients, implying there is a small

subset of firms that Granger-cause other residual volatilities.

Consistent with existing literature (see Billio et al., 2012 or Härdle et al., 2016), the

banking sector is most interconnected, followed by industrial firms, as we show in Table

4. Here, we display the absolute level of connections per sector in our sample. In the

following tables we standardise these linkages and cross-evaluate them by country. In line

with Barigozzi and Brownlees (2018), we find more connections at the contemporaneous

than at the Granger level. Simply put, fewer firms are Granger-sources of risk and these

source firms do not transmit to all other companies. This result is robust to different

calibrations of the model. Our finding that insurers spread less risk than other financial

firms is in consistent with Härdle et al. (2016).

We report the relative connections per country, standardised by the number of firms in the

sample for each country in Table 4. Given the high interconnectedness of AIBG, Ireland

(IE) appears as the biggest relative source of connections. Lane (2014), building on

work by Lane and Milesi-Ferreti (2007), shows the extreme level of financial globalisation

exhibited by the Irish economy of which AIBG was the largest bank. The rest of the

countries, except for Italy, have more connections at the contemporaneous level, from

which we can infer that Italian firms are a relatively bigger source of Granger-caused

volatility.

The standardised linkages between sectors can be seen in Table 5. Again, banks is the

most interconnected sector at the contemporaneous level, followed by industrials, while

insurance does not seem to be especially risky based on this measure. Instead, insurers

are more connected to banks than among themselves. Overall, the main connections are
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along the diagonal, which again implies more interconnectedness within than across sec-

tors: even after factoring out the sector index, similar firms are more connected to each

other, especially technological companies. At the Granger level, we can observe the sys-

temic relevance of banks: a significant share of connections from each sector lead to the

banking sector. Aside from banking, the sectors that receive high shares of connections

are utilities and industrials. Barigozzi and Brownlees (2018) also find important linkages

in the industrial sector, but less so in the utilities sector which is surpassed by technol-

ogy firms in their network. The first divergence likely arises from subtle differences in

the definition of sectors as we merged utilities with energy companies, while the second

divergence suggests that technology firms are simply more interconnected in the US than

in the Eurozone.

Table 6 is equivalent to Table 5 but grouping firms by country. It is important to notice

a difference with Table 4 where we standardise the linkages by the number of firms per

country. Here, we standardise the cross-country connections by the total number of

connections of each country. In Table 6 France appears as the main target of connections

but in Table 4 French firms have low values. This puzzle is explained by the fact that

while France has a high share of firms in our sample, these firms have low degree in the

networks. This in turn implies that, at the contemporaneous level, the biggest sources of

connections are the biggest economies in the Eurozone. However, in the Granger network

this is not as clear, as Germany looks more robust to external volatilities. Mirroring

the sectoral results, in both cases we see that there is still clustering, as high share of

the connections are still within-country. Countries with less representation in our sample

have their connections concentrated instead of spread throughout the Eurozone.
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5 Conclusions

Following the work of Barigozzi and Brownlees (2018), this paper applies the nets algo-

rithm to study the interconnectedness of the 86 biggest firms in the Eurozone for a sample

period spanning from May 2008 to April 2018. We have estimated two sparse networks

of return volatilities that allow us to measure systemic risk and detect patterns of its

transmission. Compared to the original study of the US economy, we have utilised a more

detailed set of industries. What is more, country-specific volatilities were added as an

extra factor in order to obtain more precise firm-specific residual volatilities, while still

uncovering a large number of connections.

At the contemporaneous level almost all industries exhibit high connectedness, a pat-

tern which became immediately apparent on the initial heatmaps of residual correlations.

Even when controlling for sectoral and country volatilities we find clusters of firms re-

acting strongly with other firms within the same business area. These co-movements are

especially remarkable within the banking, industrial, and technological sectors.

However, it is a small subset of companies, mostly financial firms, that displays high in-

terconnectedness at the Granger-causal level. Consequently, we conclude that banks are

particularly important risk transmitters in the Eurozone network. The subset of banks

is especially susceptible to volatilities stemming from other sectors. This makes intuitive

sense as we can think of banks being highly leveraged when compared with other entities

(Freixas et al., 2015). Moreover, banks amplify and transmit shocks to all the other sec-

tors, which reflects their unique economic role as financial intermediaries. Altogether, this

provides empirical support for the regulatory targeting of certain Systemically Important

Financial Institutions.
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Appendix

Figure 1: Heatmaps: Sample Correlation and Autocorrelation

The left-hand side figure shows the correlation of the residuals, while the right-hand side displays the

sample autocorrelation of the residuals.

Figure 2: Granger and Contemporaneous Network

This figure displays both networks, with the size of the vertex varying with the degree of the firm, and

the color corresponding to the sector.
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Figure 3: Histograms of Degrees and Betweenness

The left-hand side figures show the histograms of the degrees in the Granger and Contemporaneous

networks, respectively, while the right-hand side displays the betweenness.

Figure 4: Histograms of Coefficients

Histograms of the non-zero estimated coefficients for the Granger and Contemporaneous network,

respectively.
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Table 1: Panel of firms

Ticker Firm Sector C’tryTicker Firm Sector C’try

BMWGBayerische Motoren Werke Automobile DE DPWGn Deutsche Post Industrials DE
DAIGn Daimler Automobile DE SAF Safran Industrials FR
FCHA Fiat Chrysler Automobiles Automobile IT SCHN Schneider Electric Industrials FR
PEUP Peugeot Automobile FR SIEGn Siemens Industrials DE
PSHG Porsche Automobil HoldingAutomobile DE SOLB Solvay Industrials BE
RENA Renault Automobile FR TENR Tenaris Industrials LU
VOWG Volkswagen Automobile DE CRH CRH Industrials IE
AIBG AIB Group Banks IE SGOB Saint Gobain Industrials FR
BNPP BNP Paribas Banks FR HEIG HeidelbergCement Industrials DE
BBVA BBVA Banks ES SGEF Vinci Industrials FR
SAN Banco Santander Banks ES AXAF AXA Insurance FR
SABE Banco de Sabadell Banks ES AEGN Aegon Insurance NL
CABK Caixabank Banks ES AGES Ageas Insurance BE
CBKG Commerzbank Banks DE ALVG Allianz Insurance DE
CAGR Credit Agricole Banks FR CNPP CNP Assurances Insurance FR
DBKG Deutsche Bank Banks DE MUVGn Münchener Rück Insurance DE
ERST Erste Group Bank Banks AT SAMPO Sampo Insurance FI
ING ING Groep Banks NL DIOR Christian Dior Pers. Cons.FR
INT Intesa Sanpaolo Banks IT HNKG Henkel & Co Pers. Cons.DE
KBC KBC Groep Banks BE OREP L’Oreal Pers. Cons.FR
CNAT Natixis Banks FR LVMH M. H. Louis Vuitton Pers. Cons.FR
RBIV Raiffeisen Bank Banks AT DWNG Deutsche Wohnen Real EstateDE
SOGN Societe Generale Banks FR GFCP Gecina Real EstateFR
CRDI Unicredit Banks IT LOIM Klepierre Real EstateFR
UBI Unione di Banche Italiane Banks IT UNBP Unibail Rodamco Real EstateFR
ABI Anheuser Busch Inbev Food & Bev.BE ASML ASML Holding Technology NL
CARR Carrefour Food & Bev.FR DTEG Deutsche Telekom Technology DE
DANO Danone Food & Bev.FR ORAN Orange Technology FR
HEIN Heineken Food & Bev.NL SAPG SAP Technology DE
AD Koninklijke Ahold Delhaize Food & Bev.NL TLIT Telecom Italia Technology IT
PERP Pernod Ricard Food & Bev.FR TEF Telefonica Technology ES
UNC Unilever Food & Bev.NL VIV Vivendi Technology FR
BAYGnBayer Healthcare DE EDF Electricite de FranceUtilities FR
FMEG Fresenius Medical Care Healthcare DE ENEL Enel Utilities IT
FREG Fresenius Healthcare DE ENGIE Engie Utilities FR
PHG Koninklijke Philips Industrials NL FORTUMFortum Utilities FI
MRCG Merck Industrials DE IBE Iberdrola Utilities ES
SASY Sanofi Industrials FR ENI Eni Utilities IT
AIRP Air Liquide Industrials FR GAS Gas Natural SDG Utilities ES
AIR Airbus Industrials NL OMVV OMV Utilities AT
MT ArcelorMittal Industrials LU REP Repsol Utilities ES
BASFn BASF Industrials DE FTI TechnipFMC Utilities FR
ITX Industria de Diseno Textil Industrials ES TOTF Total Utilities FR

Table 1 shows a list of all tickers and their respective firm names and sectoral affiliation.
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Table 2: Statistical Inference

Auto Banks Food Heal Ind Ins Pers Real Tech Util All

variance 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.08 0.05 0.05 0.05
kurtosis 3.88 4.60 3.84 3.81 4.02 3.98 4.05 3.19 3.95 3.69 4.02
ρ1 0.29 0.32 0.23 0.19 0.26 0.25 0.18 0.36 0.26 0.29 0.27
ρ5 0.19 0.24 0.15 0.09 0.17 0.17 0.11 0.28 0.17 0.21 0.18
ρ22 0.15 0.18 0.12 0.06 0.13 0.13 0.06 0.23 0.12 0.16 0.14
ρ0,others 0.08 0.06 0.07 0.07 0.08 0.08 0.07 0.11 0.04 0.06 0.07
ρ1,others 0.05 0.04 0.05 0.04 0.04 0.05 0.04 0.07 0.02 0.04 0.04
factor R2

isc 45.2 39.6 36.9 39.3 48.5 49.9 44.5 37.0 35.3 38.8 41.5
sector R2

isc 57.9 53.9 43.7 42.6 52.2 63.8 56.9 25.5 35.2 42.5 47.4
country R2

isc 47.7 50.7 42.3 45.0 50.3 54.9 47.4 38.0 41.1 45.3 46.3

Table 2 reports average descriptive statistics by industry sectors and the overall panel. The set of

descriptive statistics considered contains the sample variance, kurtosis, autocorrelation of a trading

day, week and month, the average contemporaneous correlation with all other tickers, the average

order 1 autocorrelation with all other tickers, as well as the average and overall (in-sample) factor

R2
isc, (in-sample) sector R2

isc and (in-sample) country R2
isc of the regressions.

Table 3: Rankings

Granger Contemporaneous

Rank Firm Sector Country Firm Sector Country

1 AIBG Banks IE ING Banks NL

2 DWNG Real DE DWNG Real DE

3 KBC Banks BE AGES Ins BE

4 TOTF Util FR GFCP Real FR

5 PEUP Auto FR KBC Banks BE

6 EDF Util FR HEIG Ind DE

7 AGES Ins BE CBKG Banks DE

8 CABK Banks ES HNKG Pers DE

9 UBI Banks IT AIBG Banks IE

10 ORAN Tech FR CNAT Banks FR

Table 3 reports the top firms of each network, their respective sector and country.
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Table 4: Network Estimation: Countries & Sectors

Auto Banks Food Health Ind Ins Pers Real Tech Util All

Granger 17 55 25 13 41 18 8 17 22 34 250
Contemp. 21 66 20 25 58 38 14 31 23 42 338

DE IT FR IE ES AT NL BE LU FI All

Granger 2.25 3.14 2.38 10.5 2.11 3.33 2.50 5.25 3.50 3.00 3.37
Contemp. 3.95 2.14 3.62 8.50 4.33 4.33 4.75 9.75 8.00 5.50 6.58

Table 4 reports the degree of connections on each network per sector in the sample. Moreover, it

displays the degree of connections on each network per country standardised by the number of firms

from each country in the sample.

Table 5: Cross-Sectoral Linkages

Granger Components
Auto Banks Food Health Ind Ins Pers Real Tech Util

Auto 11.5 4.9 5.6 0 11.1 9.1 0 4.3 11.1 5
Banks 26.9 23.2 22.2 14.3 30.6 18.2 0 26.1 25.9 37.5
Food 3.8 13.4 5.6 14.3 8.3 9.1 0 4.3 7.4 10
Health 0 4.9 5.6 14.3 2.8 4.5 11.1 13 3.7 2.5
Ind 15.4 13.4 11.1 0 11.1 31.8 44.4 21.7 11.1 12.5
Ins 3.8 2.4 5.6 0 5.6 0 11.1 4.3 0 2.5
Pers 3.8 4.9 11.1 14.3 5.6 9.1 11.1 4.3 11.1 7.5
Real 0 8.5 5.6 14.3 5.6 4.5 22.2 13 7.4 2.5
Tech 15.4 8.5 5.6 0 8.3 9.1 0 4.3 7.4 10
Util 19.2 15.9 22.2 28.6 11.1 4.5 0 4.3 14.8 10

Contemporaneous Components
Auto Banks Food Health Ind Ins Pers Real Tech Util

Auto 36.4 2.1 0 6.1 6.2 10.4 0 4.7 2.4 1.7
Banks 9.1 54.2 6.2 12.1 12.5 29.2 13.6 18.6 7.3 25.9
Food 0 1.4 37.5 12.1 3.6 4.2 0 4.7 4.9 6.9
Health 6.1 2.8 12.5 24.2 5.4 2.1 13.6 4.7 2.4 3.4
Ind 21.2 9.7 12.5 18.2 48.2 8.3 9.1 14 17.1 13.8
Ins 0 2.1 0 9.1 1.8 4.2 36.4 4.7 4.9 0
Pers 15.2 9.7 6.2 3 3.6 20.8 9.1 4.7 4.9 10.3
Real 6.1 5.6 6.2 6.1 5.4 4.2 9.1 27.9 7.3 6.9
Tech 3 2.1 6.2 3 6.2 4.2 9.1 7 43.9 3.4
Util 3 10.4 12.5 6.1 7.1 12.5 0 9.3 4.9 27.6

Table 5 reports the amount of linkages from the column sector to the row sector, standardized by

the total number of linkages of the column sector. Thus, cell (i, j) reports the share of connections

from sector j to sector i, out of all sector j linkages.
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Table 6: Cross-Country Linkages

Granger Components
DE IT FR IE ES AT NL BE LU FI

DE 19.7 11.8 25.8 12.5 4.5 25 12.5 29 42.9 0
IT 9.8 5.9 7.9 0 11.4 0 4.2 9.7 0 0
FR 36.1 47.1 29.2 50 36.4 50 25 25.8 14.3 0
IE 4.9 5.9 5.6 0 9.1 0 12.5 9.7 14.3 100
ES 6.6 5.9 11.2 0 18.2 0 4.2 6.5 14.3 0
AT 6.6 17.6 4.5 25 4.5 12.5 12.5 12.9 0 0
NL 4.9 0 5.6 0 0 0 8.3 0 0 0
BE 8.2 5.9 5.6 12.5 9.1 12.5 12.5 0 14.3 0
LU 3.3 0 1.1 0 4.5 0 4.2 3.2 0 0
FI 0 0 3.4 0 2.3 0 4.2 3.2 0 0

Contemporaneous Components
DE IT FR IE ES AT NL BE LU FI

DE 46.3 19 20.9 23.5 17 13.3 20 17.1 5.6 15.4
IT 2.7 28.6 2.1 0 9.4 0 2 0 5.6 0
FR 27.2 19 45 35.3 18.9 26.7 30 41.5 33.3 23.1
IE 2.7 0 3.1 0 1.9 13.3 2 4.9 5.6 0
ES 6.1 23.8 5.2 5.9 26.4 6.7 8 12.2 16.7 7.7
AT 6.8 4.8 7.9 5.9 7.5 6.7 24 9.8 5.6 7.7
NL 1.4 0 2.1 11.8 1.9 13.3 2 2.4 5.6 7.7
BE 4.8 0 8.9 11.8 9.4 6.7 8 4.9 5.6 15.4
LU 0.7 4.8 3.1 5.9 5.7 6.7 2 2.4 11.1 7.7
FI 1.4 0 1.6 0 1.9 6.7 2 4.9 5.6 15.4

Table 6 reports the amount of linkages from the column country to the row country, standardized by

the total number of linkages of the column country. Thus, cell (i, j) reports the share of connections

from country j to country i, out of all country j linkages.
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