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Abstract

This paper evaluates the calibration method of the Heston model presented by Alòs, De
Santiago, and Vives (2015). We propose a slightly more e�cient configuration of the optimisation
procedure by introducing initial bounds on parameters. Using an extensive simulation study we
generally obtain parameter estimates in agreement with true values. In an empirical application
carried out onto high-frequency option data the calibration method fails to generate satisfactory
results. Nonetheless, we conclude that similarly simple calibration methods as the one examined
here should be used in combination with more sophisticated option pricing models.



1 Introduction

There exists a substantial body of literature concerned with the calibration of the Heston model
for pricing financial options under stochastic volatility, many of which rely on computationally
expensive algorithms. Alòs, De Santiago, and Vives (2015) propose a simple calibration method
which considers only the three most critical regions of the implied volatility surface. Although
their procedure is parsimonious and very easily implemented, their paper contributes to a model
whose empirical applicability is contested. Here we therefore evaluate their model in an extensive
numerical exercise as well as an application to real data. The paper is organized as follows. In
Section 2 we briefly outline the theoretical background. Section 3 tests the results presented in
Alòs, De Santiago, and Vives (2015) using a numerical exercise that is larger in scale and scope
than the one in the original paper. Finally, in Section 4 we extend this framework to the empirical
level using high-frequency option data. We find that whilst the calibration method has solid
theoretical foundations and produces satisfactory estimation results within the Heston universe,
inherent limitations of the latter disqualify the calibration for practical use.

2 Theoretical Framework

The framework discussed in this paper belongs to a school of pricing models that addresses a
caveat of the seminal method of Black and Scholes (1973), namely its assumption that the volatility
parameter of a financial asset remains constant across time. Although various configurations of
stochastic volatility option pricing models exist in the literature, the common denominator is
the introduction of a second nested Brownian motion that governs the movement of volatility in
addition to the conventional stock price driving Brownian motion. The Heston model discussed here
encompasses a mean-reverting stochastic volatility movement that is proportional to the square
root of the underlying asset’s variance. This section will present the mathematical framework of
the Heston model, the closely related Lewis Approximation Formula as well as the approximation
formula presented in Alòs, De Santiago, and Vives (2015).

2.1 The Heston Model

The stock price under the risk neutral measure evolves according the following dynamics

dSt = Strdt + St‡t

1
fldWt +


1 ≠ fldBt

2
, t œ [0, T ] (1)

d‡t
2 = Ÿ

1
◊ ≠ ‡t

2
2

dt + v
Ô

‡tdWt (2)

S0 > 0 (3)

‡0 > 0 (4)
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where St is the stock price at time t, r Ø 0 is the constant instantaneous interest rate, ‡t is the
current level of stochastic volatility which evolves according to the Cox, Ingersoll, Ross process,
fl œ (≠1, 1) is the correlation between the shocks to movements in stock prices and volatility, Wt and
Bt are two independent Brownian motion processes, ◊ is the long term volatility, ‹ is the volatility
of volatility, and Ÿ is the mean reverting parameter term. The parameters need to satisfy that
2Ÿ◊ > ‹

2.

The price Ct of the European Call struck at K is defined as

C (St, vt, ·) = e
≠r·

E
t

Ë
(ST ≠ K) +

È
= e

xtP1 (xt, vt, ·) ≠ e
≠r·

KP2 (xt, vt, ·) (5)

where · = T ≠ t and xt = ln(St). The second part of equation (5) is similar to the Black Scholes
formula, where the terms P1 and P2 are the conditional probability of call option expiring at the
money, given the current value of the stock price and current volatility.

Specifically, Heston (1993) defines P1 and P2 through Fourier Inverse Transformation as

Pj(x, v, T ; ln(K)) = 1
2 + 1

fi

⁄ Œ

0
Re

C
e

≠i„ln(K)
fj(x, v, T ; „)
i„

D

d„, for j = 1, 2 (6)

where the characteristic functions fj() take the following form:

fj(x, v, T ; „) = exp[C(· ; „) + D(· ; „)v + i„x] (7)

with

C(· ; „) = ri„· + a

‡2

I

(bj ≠ fl‡„i + d) · ≠ 2ln
C

1 ≠ ge
d·

1 ≠ g

DJ

(8)

b1 = Ÿ + ⁄ ≠ fl‡, b2 = Ÿ + ⁄ (9)

D(· ; „) = bj ≠ fl‡„i + d

‡2

C
1 ≠ ge

d·

1 ≠ g

D

(10)

g = bj ≠ fl‡„i + d

bj ≠ fl‡„i ≠ d
(11)

d =
Ò

(fl‡„i ≠ bj) 2 ≠ ‡2 (2uj„i ≠ „2), u1 = 1
2 , u2 = ≠

1
2 (12)

where ⁄ = ⁄(x, v, t) represents the price of volatility risk. This parameter can be computed outside
the model.
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2.2 Lewis’ Approximation Formula

The analytical solution to the Heston model is not easily implemented due to numerical issues. We
therefore resort to one of the most commonly used approximation formulae to compute call prices.
According with Lewis (2009) the price of the European call can be computed as

V (S, v, ·) = S ≠ Ke
≠r· 1

fi

⁄ Œ+ i
2

i
2

e
≠iKX Ĥ(k, v, ·)

k ≠ ik

D

dk (13)

where

X = ln
3

S

K

4
+ r· (14)

Ĥ(Ÿ, v, ·) = exp
A

2Ÿ◊

‡2

C

qg ≠ ln
A

1 ≠ he
≠›q

1 ≠ h

B

+ ‹g

A
1 ≠ e

≠›q

1 ≠ he≠›q

BDB

(15)

g = b ≠ ›

2 (16)

h = b ≠ ›

b + ›
(17)

q = ‡
2
·

2 (18)

› =

Û

b2 + 4 (k2 ≠ ik)
‡2 (19)

b = 2
‡2 (ikfl‡ + Ÿ) (20)

Mrázek and Pospíöil (2017) show that formulae (13) and (5) are equivalents. They point out that
the great advantage of Lewis’ formula is that it is well behaved and only one numeric integration is
required. We will use the Lewis formula to compute the call prices in the numerical exercise.1

1
Note that in their calibration exercise Alòs, De Santiago, and Vives (2015) use an online tool that implements

the analytical solution using a program made available by T. Kluge (2002). For a more extensive simulation study

using this online calculator becomes infeasible. Using Lewis (2009) formula for pricing instead, we obtain calibrated

parameters very close to those in Alòs, De Santiago, and Vives (2015).
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2.3 Alòs, De Santiago, and Vives (2015) Approximation Formula

Alòs, De Santiago, and Vives (2015) show that the Heston formula for the European call price
(Equation 5) can be approximated by

C̃t = BS (t, Xt, ṽt) + H (t, Xt, ṽt) Ut + K (t, Xt, ṽt) Rt (21)

where BS (·, Xt, ṽt) is the Black Scholes formula using the usual inputs: current stock price St,
time to maturity · , risk-free interest rate r, Xt = ln

Ë
St
K

È
, xt = ln [St], and volatility ṽt. This last

term denotes the future expected volatility, defined as:

‡ = ṽt =

Û
1
·

⁄ T

t
E
t

[vs
2] ds =

Û

◊ + vt
2 ≠ ◊

Ÿ·
(1 ≠ e≠Ÿ· ) (22)

The remaining terms are denoted as:

H(t, x, ‡) = e
x

‡
Ô

2fi·
exp

C

≠
d+2

2

D A

1 ≠
d+2

‡
Ô

·

B

(23)

Ut = fl‡

2Ÿ2

Ó
◊Ÿ· ≠ 2◊ + vt

2 + e
≠Ÿ·

1
2◊ ≠ vt

2
2

≠ Ÿ·e≠Ÿ·
1
vt

2
≠ ◊

2Ô
(24)

K(t, x, ‡) = e
x

‡
Ô

2fi·
exp

C

≠
d+2

2

D
d+2

≠ ‡d+
Ô

· ≠ 1
‡

Ô
·

(25)

d+ = 1
‡

Ô
·

C

ln
3

St

K

4
+

A

r + ‡
2

2

B

·

D

(26)

d≠ = d+ ≠ ‡
Ô

· (27)

Alòs, De Santiago, and Vives (2015) prove that the approximation error with respect to the real value
of the option is less than O

!
‡

2(fl + ◊)
"
. Therefore, the approximation is accurate for smaller values

of the volatility. Furthermore, this semi-closed-form solution is cheaper in terms of computational
costs and is used for tractable calibration of Heston parameters.

3 Numerical Exercise

3.1 Methodology

The calibration procedure used in this paper is similar to the one used by Alòs, De Santiago, and
Vives (2015) with the slight di�erence that the optimisation used in this project imposes stricter
parameter constraints as discussed further below. In general, the five unknown parameters of the
Heston model are:
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� = {‡0, Ÿ, ◊, ‹, fl}

Alòs, De Santiago, and Vives (2015) Taylor approximate implied volatility I(T, K) and analyse its
asymptotic behaviour. They show that when the option is at the money we have:

I(T, K) ¥ ‡0 + 3‡
2
0fl‹ ≠ 6Ÿ(‡2

0 ≠ ◊) ≠ ‹
2

24‡0
T (28)

This implies that for T = 0 we have that I(0, K) ¥ ‡0. Another of their contributions is that for
short times to maturity we have:

I(T, K) ¥ ‡0 ≠
fl‹

4‡0
(x ≠ log K) + ‹

2

24‡
3
0

(x ≠ log K)2 (29)

Finally, for long times to maturity the implied volatility of at-the-money European call options is
given by:

I(T, K) ¥

Ô

◊

A

1 + ‹fl

4Ÿ
≠

‹
2

32Ÿ2

B

+
A

‡
2
0 ≠ ◊

2Ÿ
Ô

◊
+ ‹fl

‡
2
0 ≠ 2◊

4Ÿ2
Ô

◊
≠ ‹

2 ‡
2
0 ≠

5
2◊ + 4Ÿ

32
Ô

◊Ÿ3

B
1
T

(30)

These three limiting regions are considered as the most critical areas to recover the whole volatility
surface and lay the foundation for the calibration procedure. In order to estimate �, we follow three
steps which will be briefly outlined in the following.

3.1.1 Step 1: OLS Regressions

We run OLS regressions based on Equation 28 to Equation 30 adding some restrictions on the data
as shown below:
OLS equations Restrictions on simulated data
—1,1 + —1,2T+‘1 Tœ[0.01,0.2] and S0=K e

≠rT

—1,1 + —2,2 ln(S0
K e

≠rT ) + —2,3 ln(S0
K e

≠rT )2 + ‘2 T=0.01 and ln(S0
K e

≠rT ) œ [0.8, 1.2]
—3,1 + —3,2

1
T + ‘3 TØ3.5 and S0=K e

≠rT

3.1.2 Step 2: Matching

We exploit the relationship between the theoretical parameters in Equation 28 to Equation 30 and
the estimated coe�cients of the Step 1 as outlined below:
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Calibration steps Theoretical value Empirical value
(i) Estimate ‡0 ‡0 —̂1,1
(ii) Estimate ‹fl ≠

‹fl
4‡0

—̂2,2

(iii) Given (i) and (ii), ≠Ÿ(‡02≠◊)
4‡0

+ ‹fl
8 ‡0 ≠

‹2
24‡0

—̂1,2

solve the system for {Ÿ,◊,‹}
Ô

◊

1
1 + ‹fl

4Ÿ ≠
‹2

32Ÿ2

2
—̂3,1

‡2
0≠◊

2Ÿ
Ô

◊
+ ‹fl

‡2
0≠2◊

4Ÿ2
Ô

◊
≠ ‹

2 ‡2
0≠2.5◊+4Ÿ

32Ÿ3
Ô

◊
—̂3,2

(iv) Estimate fl from (ii), given ‹̂ and ‡̂0 fl ≠
—̂2,24‡̂0

‹̂ œ(-1,1)

3.1.3 Step 3: Optimisation

In the matching step we have three equations and three unknown parameters {Ÿ, ◊, ‹}. However, this
nonlinear system of equations has multiple solutions and optimisation is sensitive to the estimated
coe�cients, the resulting initial guesses as well as to the numerical method used. This introduces
some complications with regard to some specifications of the true model parameters �. On the basis
of this we have decided to introduce a few modifications and found that this has slightly improved
the calibration.2 In the following, we will look at the above-mentioned issues one by one.

3.1.4 Loss function

Alòs, De Santiago, and Vives (2015) proposed to optimise sum of squared residuals of the system of
equations given in (iii). They use Solver to do so, given an initial guess for {Ÿ, ◊, ‹}. In our case,
instead of optimising the sum of square errors, we impose the following loss function to optimise the
system:

L(Ÿ, ◊, ‹) =
1
f

1(Ÿ, ◊, ‹) + f
2(Ÿ, ◊, ‹) + f

3(Ÿ, ◊, ‹)
22 (31)

where

f
1(Ÿ, ◊, ‹) = ≠Ÿ

!
‡̂02

≠ ◊
"

4‡̂0
+ ‹̂fl

8 ‡0 ≠
‹

2

24‡̂0
≠ —̂1,2

f
2(Ÿ, ◊, ‹) =

Ô

◊

A

1 + ‹̂fl

4Ÿ
≠

‹
2

32Ÿ2

B

≠ —̂3,1

f
3(Ÿ, ◊, ‹) = ‡̂02

≠ ◊

2Ÿ
Ô

◊
+ ‹̂fl

‡02
≠ 2◊

4Ÿ2
Ô

◊
≠ ‹

2 ‡̂02
≠ 2.5◊ + 4Ÿ

32
Ô

◊Ÿ3 ≠ —̂3,2

(32)

can best be thought of as residuals. The advantage of the loss function given by Equation 31 is
that it penalizes not only squared residuals, but also the cross products between them. Nonetheless,
that function is still not convex and local minima can occur. Figure 1 illustrates this issue using
simulated data: from left to right we fix one parameter at a time and observe that in two out of
three cases finding a minimum for Ÿ is not trivial given the shape of the objective function. As a
consequence, bounds on this parameter should be quite strict.

2
For a comparison of the approximation errors under weaker and stricter constraints please refer to Table 3 in the

appendix
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Figure 1: Loss functions of simulated data fixing one parameter at a time.

3.1.5 Initial Guess

We generally define initial values for {Ÿ, ◊, ‹} in the same way as Alòs, De Santiago, and Vives (2015),
although we introduce a slight modification for ‹0: an initial high value for ‹0 is imposed whenever
the estimated coe�cient —̂2,3 is negative, since otherwise the optimisation becomes infeasible. We
have encountered this issue for some parameter specifications used in the simulation study below.
For the initial guesses we have therefore defined

‹0 =

Y
]

[

Ò
24‡̂

3
0—̂2,3 if —̂2,3 Ø 0

0.5 otherwise

◊0 = —̂
2
3,1

Ÿ0 = Solve
C

≠Ÿ
!
‡̂02

≠ ◊0
"

4‡̂0
+ ‹̂fl

8 ‡̂0 ≠
‹02

24‡̂0
= —̂1,2, {Ÿ}

D
(33)

3.1.6 Bounds

There is no explicit need to impose parameter bounds in the optimisation. However, for certain
values of � it fails to converge. Because of this we have imposed bounds on the search of optimal
values based on initial guesses for parameters. Specifically we have defined:

◊0 œ [0.85◊0, 1.05◊0]
Ÿ œ [Ÿ0, 1.05Ÿ0]

(34)

These bounds are arbitrary and purely based on a guess and verify process. Furthermore, we have
deemed it reasonable to impose fl œ [≠1, 1]. From this it follows:

‹0 Ø 4‡̂0—̂2,2 (35)

To conclude, the optimisation process can be summarized as solving

Ó
Ÿ̂, ◊̂, ‹̂

Ô
= argmin {L(Ÿ, ◊, ‹)} (36)
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subject to Equation 34 and Equation 35 using as initial guess values given by Equation 333.

3.2 Calibration Results

To gain a first impression of the calibration’s accuracy we have computed absolute percentage
deviations of the estimates from the true model parameters as in Alòs, De Santiago, and Vives (2015).
Table 1 displays true and calibrated parameters as well as their absolute percentage deviations for
di�erent parameter specifications. In general, we observe that errors are highest for the volatility of
volatility ‹ and lowest for ‡0, the initial volatility. We have split the simulation into three subsets
where firstly we look at the non-correlated case, then we let only fl vary and finally we let all
parameters vary. Overall, average errors are roughly similar across these three subsets. Rows 3 and
8 correspond to the parameter choices in Alòs, De Santiago, and Vives (2015). A few relationships
between the di�erent parameters and their corresponding errors appear to emerge: firstly, for both
‹ and ‡ the calibration improves as the true supplied values increase; secondly, errors for ◊ and
Ÿ increase with the magnitude of their true values; finally, errors for fl are highest around fl = 0.
Decreases in accuracy are likely driven by moving into complex regions of the loss functions in which
numerical methods fail. Overall these dependencies on true parameters demonstrate that in reality
the accuracy of the calibration may be compromised.

Besides looking at approximation errors of the calibrated parameters it should also be enlightening
to analyse more closely in what specific areas the estimated implied volatility surface deviates from
the true surface. For each of the parameter combinations in Table 1 we have firstly computed call
prices under the Heston model over the strike range K œ [95, 105] and maturity range M œ [0.01, 4]
using true parameters and then calibrated ones. Values for the implied volatility are then derived
by inverting the Black-Scholes formula. We calculate the absolute percentage deviation of the
true volatility surface under the Heston model and the surface obtained from using the calibrated
parameter values. These approximation errors are plotted for each parameter specification in
Figure 2. The dashed rectangle indicates where the option is at the money.

Note that deviations are generally minimized for small times to maturity and near the money. Even
more so, for some specification errors also decrease for long times to maturity. These findings
are intuitive, since the regressions used for the calibration primarily focus on these areas of the
volatility surface and it should therefore not be surprising to obtain accurate results here. Finally, a
satisfying result is that the overall percentage errors are small. Out of all simulations the maximum
average error across the entire surface is 0.999 percent for specification 15. The mean error across
simulations is 0.481 percent. Overall these results indicate that if we assume that the Heston model
accurately describes option prices under stochastic volatility, the calibration by Alòs, De Santiago,
and Vives (2015) works well despite depending on the given parameters to some extent.

3
We have used Mathematica to perform the optimisations.
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4 Empirical Application

Whilst the literature contains a range of studies aiming to validate the Heston model using empirical
data, the general consensus of the model’s e�cacy remains contested. For instance, Drǎgulescu and
Yakovenko (2002) celebrate that their analytical solution of the Heston model using the Fokker-
Planck equation tracks the Dow Jones index with considerable precision. However, this study is
challenged by Daniel, Joseph, and Brée (2005), who in turn provide evidence that the accuracy
of these results was driven by questionable data preprocessing. Furthermore, Daniel, Joseph, and
Brée (2005) find that the Heston model only outperformed the constant volatility framework for
small time horizons. Equivalently, Fiorentini, Leon, and Rubio (2002) apply the model to Spanish
IBEX-35 options and conclude that Heston estimates only marginally outperform the the standard
Black-Scholes framework, while similar results are presented by Bakshi, Cao, and Chen (1997) and
Chernov and Ghysels (2000).

Bearing in mind the heterogeneity observed across the literature with regard to the practical utility
of the model, the following section continues with an empirical extension of the calibration method
presented by Alòs, De Santiago, and Vives (2015).

4.1 Data Collection

The regression structures in the calibration method used by Alòs, De Santiago, and Vives (2015)
imply that an empirical extension requires a multidimensional option dataset spanning across both
strike prices and maturities. Alike any quantitative study of equity options, we encountered stringent
constraints in the supply of readily available data. In fact, sources of time-series data on di�erent
option contracts are restricted to either financial institutions or costly commercial platforms such
as Bloomberg Terminal or Thomson Reuters. In order to obtain a rich dataset without spending
thousands of dollars or compromising our limited connections in the banking industry, we confront
this issue by employing a data mining strategy that is presented below.

The R library quantmod contains the useful function getOptionChain that queries the Yahoo Finance
API for spot option prices on a selected ticker for all available maturities and contracts. Our
configuration of this function, optionQuery, outputs a data table with an enriched variable structure
including precise time to maturity (in fractions of years) as well as the prevailing spot price of the
underlying (using quantmod’s getQuote function). The output of our function is highly tractable
for aggregation, as showcased below in Table 2.

ID Strike Timetomat Last Bid Ask Vol Spot TimeStamp

AAPL180720C00002500 2.50 0.15 185.13 185.75 186.45 1261 188.58 2018-05-26 14:03:09

AAPL181019C00002500 2.50 0.40 187.49 185.50 186.85 4 188.58 2018-05-26 14:03:09

AAPL190118C00042500 42.50 0.65 146.09 145.80 146.95 40 188.58 2018-05-26 14:03:09

AAPL200117C00050000 50.00 1.64 140.00 136.50 141.00 30 188.58 2018-05-26 14:03:10

AAPL180921C00075000 75.00 0.32 115.07 113.25 114.65 65 188.58 2018-05-26 14:03:09

AAPL190621C00085000 85.00 1.07 84.50 82.00 86.30 4 188.58 2018-05-26 14:03:09

AAPL200619C00085000 85.00 2.07 100.65 101.00 105.00 2 188.58 2018-05-26 14:03:10

AAPL180615C00100000 100.00 0.05 89.15 88.35 89.00 2 188.58 2018-05-26 14:03:09

AAPL180817C00100000 100.00 0.23 89.91 88.40 89.80 1 188.58 2018-05-26 14:03:09

AAPL181116C00110000 110.00 0.47 65.80 73.10 75.35 2 188.58 2018-05-26 14:03:09

AAPL180608C00130000 130.00 0.03 36.90 53.40 54.70 1 188.58 2018-05-26 14:03:09

AAPL180706C00180000 180.00 0.11 10.34 10.15 10.35 11 188.58 2018-05-26 14:03:09

Table 2: optionQuery function output.
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The isolated use of optionQuery helps to little avail, however, seeing as it only provides spot prices.
In order to create the actual time-series database, we have created an automated script that calls
optionQuery every minute throughout NASDAQ’s opening times (i.e. 09:30 to 16:00, U.S. Eastern
Time). Data has been sampled between Tuesday, May 01 and Friday, May 18, 2018. We have selected
Facebook Inc. (FB) seeing as it is normally traded at high volume. Furthermore, the volatility of
this ticker should be of particular interest owing to Mark Zuckerberg’s recent appearances in the U.S.
Senate and the European Parliament, which occurred during the scraping period. Ultimately, the
aggregated output of these sequentially produced data files generates a rich dataset that we use in
the calibration of Heston’s model. In total the data panel consists of 3720 minute-wise observations
across 531 option contracts. For the computation of minute-wise implied volatilities one also needs
information about the instantaneous interest rate. Historical data for the U.S. 10-year treasury note
(TNX) is readily available at a daily frequency. To match it with the high-frequency option data we
have interpolated the daily observations using a cubic spline.45

4.2 Calibration and results

To perform the calibration on empirical data, the general approach is the same as for simulated
data. However, a number of complicating factors with respect to real data should be pointed out.
Recall that these regressions rely on options falling into narrowly defined ranges for strike prices
and times to maturities. The accumulated option chain data for Facebook call options contains
531 unique contracts with unique combinations of K and T , but for each regression only subsets of
these contracts fall into the specified ranges. A principal concern was therefore to avoid running
into small sample issues.

Consider for example the first regression for which Alòs, De Santiago, and Vives (2015) use simulated
implied volatilities for at-the-money options with times to maturity T Æ 1. In practice, it is not
possible to find options that are exactly at-the-money. Since at any given point t the spot price
St œ R+ can take infinitely many possible values, the probability that it just matches the strike
price St = K is zero. To deal with this issue we have specified a certain range of options which are
considered as being at-the-money. In particular, we have defined options with K œ [St ≠ 4, St + 4]
as at-the-money options, which for the underlying Facebook data leads to including options with
strike prices roughly 2 percent left and right of St on average. In terms of expiration times we have
included all options with maturities falling into the smallest quartile across all expiration times
within the option chain, so T Æ TQ1. The second regression involves regressing implied volatilities
on log-moneyness for short times to maturity. In order to preserve enough data we have included all
options for which ln(St

K ) œ [≠0.3, 0.3], so thirty percent left and right of St = K and only those which
had the shortest time to maturity in our sample. For the third regression we need at-the-money
options with long times to expiration. The filtration of at-the-money option was done in the same
fashion as in the first regression. Long times to maturity have been defined as T Ø TQ3, so we have
included all options for which time to maturity falls into the third quarter of all times to maturity
across the sample. Following these steps we have been able to obtain subsets large enough for

4
We are happy to share our data which also contains data for Apple Inc. (AAPL) with the readers of this paper.

The website https://griipen.shinyapps.io/bgse/ allows the user to browse and download daily aggregates of our data,

and the full minute-wise dataset is available on request.
5
If readers want to use our code for future analysis, our GitHub depository https://github.com/HitKnit/BGSE2018/

tree/HitKnit-optionscraping contains scripts for minute-wise option scraping (prices.R) and subsequent data compiling

(dataCompiler.R).
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regression analysis. Below we firstly turn to intra-daily data before analysing the model’s output
across days. This should give us an idea of the calibration’s robustness across time.

Similarly as in subsection 3.2 in this section we look at di�erentials between the empirical and
calibrated implied volatility surfaces in order to evaluate the model’s applicability in practice. For
the intraday analysis we have computed hourly averages of the minute-wise data for Wednesday,
May 16, 2018, that is we have divided the trading day into seven sessions. Secondly, we applied the
calibration model to each interval and retrieved the estimated volatility surface.

In Figure 3 we depict in each row from left to right the empirical and calibrated volatility surface as
well as their absolute percentage deviation. We present results for the opening session (10:00:00 to
11:00:00), the midday session (12:00:00 to 13:00:00) and the closing session (15:00:00 to 16:00:00).6
Since the underlying stock price moves across the trading, so do the calibration and plot ranges
for the strike price and times to maturity. The first observation one can make is that errors are
generally larger for options close to maturity, a feature has previously figured in the literature
(Janek et al. (2011)). In particular, for the opening and lunch session of this specific day the errors
drastically surge for small times to maturity. The kinks observed on these plots coincide with times
to maturity of around 6 months. Secondly, the error peaks appear to display inverse smile shapes,
indicating that the the calibration exaggerates the smile around this region. However, for larger
times to maturity errors are more homogeneous across strikes on this particular day. Furthermore,
note that the empirical surfaces exert volatility spikes for in-the-money options close to maturity.
This feature is persistent and is only partially captured by the estimated surfaces. In general though,
the overall shape of the empirical surfaces is roughly reproduced by the calibration, although it
should be noted that absolute percentage errors throughout the day lie between 0.017 and 45.589
percent. Finally, with respect to the robustness of the calibration, one can observe that the shape
and magnitude of the error surfaces do not seem to depend on the time of day.

For the calibration at daily frequencies we have aggregated averages of all variables in the minute-wise
data set for each trading day between Tuesday May 01, 2018 and Friday May 18, 2018. This yields
data for 14 trading days across three weeks. In Figure 4 we have plotted volatility and error surfaces
in the same way as above for Wednesday of each week.7 Once again ranges for the strike price and
times to maturity are slightly di�erent for each plot to accommodate spot price movements. First
of all, note that the error surfaces display larger heterogeneity across days vis-a-vis hours. Recall
that for Wednesday, May 16, 2018 we already observed above that errors across strike prices are
largely homogeneous. While this is still the case for aggregated data of this day, not all days exert
this feature. Especially for May 09 but also May 16 the empirical surfaces dip for out-of-the money
options close to expiration, a feature that is not captured well by the calibrated surfaces. We have
observed that within each week these patterns are actually fairly consistent (see appendix).

Two general patterns emerge across all days in the sample. Firstly, errors are larger for small times
to maturity: calibrated surfaces deviate on average around 16.488 percent from empirical surfaces
for short times to maturity (M < 0.5) while for longer times to maturity errors are only on the
order of 7.632 percent. It should be pointed out that this is exactly the opposite of what we observe
for simulated data. Secondly, fitted surfaces consistently overestimate the smiles close to maturity:
for at-the-money options (K œ [0.98St, 1.02St]) close to maturity (M < 0.5) the average estimation
error is 18.291 percent, while for corresponding in- and out-the-money options the average estimation
errors are only 14.152 and 16.261 percent, respectively.

6
Plots for every single session of the day can be found in Figure 5 in the appendix.

7
Plots for every single day can be found in Figure 6 to Figure 8 in the appendix.
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Figure 3: Comparison of empirical implied volatility surface and surface optained from using calibrated parameters

for Facebook. From top to bottom volatilities are shown for the trading sessions from 10:00:00 to 11:00:00, from

12:00:00 to 13:00:00 and from 15:00:00 to 16:00:00 on May 16, 2018. The dashed frame indicates the spot price, hence

options surrounding this frame are near the money.
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Overall the findings of this section demonstrate the practical shortfalls of both Heston model and
ultimately also the calibration method proposed by Alòs, De Santiago, and Vives (2015), which
relies on the validity of the former. Not only do we find approximation errors that are generally
quite substantial, but also persistent across time. The fact that the approximation consistently
generates error of roughly the same magnitude for the same options demonstrates that there is
scope for improvement.

5 Conclusion

One primary aim of this paper has been to explore the Heston calibration method introduced
by Alòs, De Santiago, and Vives (2015). For this purpose we have firstly extended the scale and
scope of their simulation study. We have found that the performance of the calibration to some
extend depends on the initial set of Heston parameters. This issue has been extensively discussed
in previous literature and is likely due to the five-dimensional space in which calibration for the
Heston model takes place, as this environment concedes little promise of a well-behaved objective
function (see Cui, Baño Rollin, and Germano (2017) for a brief review). A comparison of the true
and calibrated implied volatility surfaces based on simulated data within the Heston framework has
further shown that the calibration is least accurate in those areas of the volatility universe where
it does not actually operate, that is far away from the limits. Overall, however, the magnitude of
errors is negligible implying that relying on a computationally simple calibration at the limits is not
penalized.

A second goal of this paper has consisted in testing the calibration’s potential value for practitioners.
For this purpose we have gathered substantial amounts of recent real data on prices of numerous
Facebook call options. Using the same methodology as for simulated data, we have found that
unfortunately average approximation errors are large and disqualify the calibration from any
reasonable prospect of practical application. In particular we observe that the shape of the
di�erential surfaces is roughly consistent across time and hence approximation errors are predictable.
This indicates that adaptations of the Heston model could avoid these errors. Methods that have
already been used to address this include employing fractional stochastic volatility jump di�usion
models (Pospíöil and Sobotka (2016)) and rough volatility models in general.

Overall, we conclude from our empirical study that Alòs, De Santiago, and Vives (2015) calibration
inherits flaws from the Heston model. Nonetheless, the first part of our analysis has demonstrated
that the idea of using rather simple calibration methods that rely on only a limited number of
regressions is a fruitful ground for further research. Similar methods as the one proposed by Alòs, De
Santiago, and Vives (2015) could be used to accommodate more involved extensions of the Heston
model which more accurately describe the behaviour of option prices under stochastic volatility.
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Figure 5: Volatility surfaces for all seven trading intervals on Wednesday, May 16, 2018.
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Figure 6: Comparison of empirical implied volatility surface and surface optained from using calibrated parameters

for the first week from May 01, 2018 to May 04, 2018.
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Figure 7: Comparison of empirical implied volatility surface and surface optained from using calibrated parameters

for the second week from May 07, 2018 to May 11, 2018.
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Figure 8: Comparison of empirical implied volatility surface and surface optained from using calibrated parameters

for the third week from May 14, 2018 to May 18, 2018.
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