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Abstract

Weak identification is known to yield unreliable standard instrumental variables

inference. A large literature has focused on addressing this issue by proposing

methods to detect weak instruments, mainly through the first-stage F-statistic.

This paper evaluates the weak identification in two leading empirical analyses

by using the novel alternative approach developed by Ganics, Inoue and Rossi

(2018), who base their tests on confidence intervals for the bias of the two-stage

least squares estimator, and the size distortion of the associated Wald test. We

illustrate the behavior of the tests in empirical settings, and compare how the

conclusions differ to those using the standard tests. Our findings suggest that, in

our empirical application, the results obtained using this approach are in line with

those using previous tests in the literature, confirming it to be a robust alternative.

An R package to directly compute these novel tests is also presented.
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1 Introduction

In this paper, we discuss the novel methodology proposed by Ganics, Inoue and Rossi

(2018) for constructing confidence intervals to test for instruments’ strength, namely for

the bias of the two-stage least squares (2SLS) estimator, as well as for the size distortion

of the associated Wald test, in various linear instrumental variables (IV) contexts. In

order to do so, we introduce a new R package that retrieves such confidence intervals.

Instruments’ strength is a common source of concern in IV estimations. It can be shown

(see Stock et al., 2002) that when instruments are weakly correlated with endogenous

regressors, the standard IV approach yields unreliable inference: point estimates are

inconsistent and the size of the tests and confidence intervals are invalid.

A large literature has focused on addressing the weak identification problem by proposing

methods to detect weak instruments. The most common approach is to use the first-

stage F-statistic (or its generalization, for the case of multiple endogenous regressors), as

proposed by Staiger and Stock (1997), Stock et al. (2002), and Stock and Yogo (2005).

The procedure is simple: if the first-stage F-statistic is large enough, according to the

appropriate critical values (see Stock and Yogo, 2005), then instruments are strong and

standard inference is valid. However, a possible issue for applied researchers is that all

these tests assume the errors to be homoskedastic and serially uncorrelated, which is

not always the case in practice. Montiel-Olea and Pflueger (2013) provide an alternative

which applies to general (heteroskedastic, serially correlated and/or clustered) errors, the

so-called effective F-statistic, but only develop their work for the case of one endogenous

regressor.

Ganics et al. (2018) propose a new approach to test the instruments’ strength, based on

constructing confidence intervals for the bias of the 2SLS estimator as well as for the

size distortion of the associated Wald test. These novel tests present several advantages

compared to those hitherto available. First, the methodology is robust to the presence

of weak instruments. Second, and probably the most useful for applied researchers, the

confidence intervals allow to answer how weak or strong instruments are, meaning that

testing for weak instruments is not a binary decision anymore, as it is when using the

first-stage F-statistic. Moreover, Ganics et al. (2018) point out that such confidence

intervals “are straightforward and computationally easy to calculate, as they are ob-
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tained from inverting asymptotic chi-squared distributions”. This simplicity contrasts

with previous tests for weak instruments, which either involve computationally intensive

bootstrapping (see Hansen, 1999), or whose distributions are typically asymptotically

non-pivotal, as they depend on nuisance parameters that cannot be consistently esti-

mated (see Staiger and Stock, 1997). Intuitively, this follows because previous tests are

based on the difference between the estimate of the strength of identification and zero

(no identification), thus containing information about the true strength of identifica-

tion, which cannot be consistently estimated. The novel confidence intervals, instead,

are based on the difference between the estimate and the true strength of identification,

rather than the null hypothesis of no identification, and the limiting distribution of such

difference does not depend on how weak instruments are.

Another important property addresses the need for applied researchers to find tests

that are applicable to cases where errors are heteroskedastic or autocorrelated, as high-

lighted before by Chao et al. (2012) and Hausman et al. (2012). As previously men-

tioned, with the exception of Montiel-Olea and Pflueger (2013) and few others1, tests

for weak instruments in IV settings assume homoskedastic and serially uncorrelated

errors. Montiel-Olea and Pflueger (2013) show that heteroskedasticity, serial correla-

tion and/or clustering affect the weak instruments asymptotic distribution of the 2SLS

estimator, what can further bias it and distort test sizes when instruments are weak,

inducing the researcher to wrongly conclude that they are strong. The methodology

by Ganics et al. (2018) can easily be applied when dealing with heteroskedastic and

serially correlated disturbances; one will just replace the standard 2SLS estimator by

the Heteroskedasticity and Autocorrelation Consistent (HAC) counterpart.

To the best of our knowledge, these recently proposed tests have not been subject to

many empirical robustness checks, only the brief empirical analysis in Ganics et al.

1So far, there is no consensus on what tests should be used in over-identified and non-homoskedastic
settings, and this literature is relatively recent. Very different alternatives have been proposed, what
makes hard any comparison with the here presented tests. This is why we do not elaborate deeper
on that. These alternatives include a variety of the Conditional Likelihood Ratio test for the non-
homoskedastic case (see Kleibergen (2002), Andrews et al. (2004), Andrews (2016), Andrews and
Guggenberger (2019), Andrews and Mikusheva (2016), among others). These have been proven to
be efficient under strong instruments, however there is only simulation evidence on their power with
weak instruments. Alternatively, some tests have been proposed that maximize the integral of the
power function with respect to some weights (see, for instance, Moreira and Moreira (2015), Montiel-
Olea (2017), or Moreira and Ridder (2017)). These latter raise the question of what the “right” weights
are.
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(2018) and the work by Ganics (2017), Chapter 3. Here, we elaborate on this by evalu-

ating the empirical performance of this novel methodology, replicating previous studies

dealing with potentially weak instruments and analysing how the conclusions about the

instruments’ strength compare to when using standard tests. We find very similar re-

sults regarding the conclusions of the instruments’ strength as compared to when using

previous tests in the literature, in our empirical applications. The paper is organized

as follows. Section 2 presents the different tests proposed by Ganics et al. (2018), with

special focus on the case of one endogenous regressor in the presence of homoskedas-

ticity. Section 3 introduces the new package girtest in R that directly computes the

confidence intervals for the bias and size distortion. Section 4 evaluates the empirical

performance of such test. Section 5 concludes.

2 Test for Weak Instruments

Ganics et al. (2018) consider three different econometric frameworks, for which they

propose the corresponding confidence intervals: the linear homoskedastic IV model, the

heteroskedastic/autocorrelated linear IV model and the local projections-IV method.

However, as the authors note, the latter is just a special case of an heteroskedastic and

autocorrelated IV model.2 Driven by the fact that most of the tests in the literature

concern homoskedastic settings, and our aim is to analyse how the results compare when

using the novel tests, we will only cover here the linear homoskedastic IV model, and

leave the heteroskedastic/autocorrelated linear IV model for further work.

Throughout the paper, we will follow their notation, which is also commonly used in

this literature. To this end, let T denote the sample size, and p→ and d→ convergence

in probability and distribution, respectively. The vectorization operator is denoted by

vec(·) and ⊗ is the Kronecker product. The normal distribution with mean vector

ψ and covariance matrix Ξ is denoted by N (ψ,Ξ), and χ2
K(τ) denotes a chi-squared

distribution with K degrees of freedom and noncentrality parameter τ . For any (T ×K)

matrix A, PA ≡ A(A′A)−1A′ and MA ≡ IK − PA, where IK is the (K × K) identity

matrix. We also adopt the convention that for a symmetric positive definite matrix B,

B = B1/2B1/2 and B−1 = B−1/2B−1/2, where B1/2 and B−1/2 are the unique principal

square roots.

2Subject, of course, to the validity of the structural vector moving average representation.
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Following Staiger and Stock (1997) and Stock and Yogo (2005), consider the following

two-stages least squares setup:

y = Y β +Xγ + u (1)

Y = ZΠ +XΦ + V (2)

where y is a (T × 1) vector, Y is a (T × n) matrix of included endogenous variables, X

is a (T × K1) matrix of included exogenous variables (with one column of 1’s if there

is an intercept in (1)) and Z is a (T ×K2) matrix of excluded exogenous variables, i.e.

instruments. β is an (n× 1), while γ is a (K1 × 1) vector of coefficients. Π is a matrix

of coefficients of dimension (K2 × n), and Φ is a (K1 × n) matrix of coefficients. The

vector of disturbances u is (T × 1), while V is a (T × n) matrix of errors.

It is convenient to defineXt = (X1t, . . . , XK1t)
′, Zt = (Z1t, . . . , ZK2t)

′, Vt = (V1t, . . . , Vnt)
′

and Zt = (X ′t, Z
′
t)
′ as the vectors of the t-th observations of the respective variables for

t = 1, . . . , T . Also, let Σ and Q denote the population second moment matrices, where

Σ = E

ut
Vt

(ut V ′t

) =

σuu ΣuV

ΣV u ΣV V

 (3)

Q = E[ZtZ
′
t] =

QXX QXZ

QZX QZZ

 (4)

To develop the weak instruments asymptotics, following Staiger and Stock (1997), the

authors model Π as local to zero3 (with a Pitman drift) and put certain restrictions

on the moments, namely the required homoskedasticity and serial uncorrelation of the

errors (part (c) of Assumption M). Formally:

Assumption LΠ: Π = ΠT = C/
√
T , where C is a fixed K2 × n matrix.

Assumption M: The following limits hold jointly for fixed K2 as T →∞:

(a) (T−1u′u, T−1V ′u, T−1V ′V )
p→ (σuu,ΣV u,ΣV V );

(b) T−1Z ′Z
p→ Q, where Q is positive definite;

(c) (T−1/2X ′u, T−1/2Z ′u, T−1/2X ′V, T−1/2Z ′V )
d→ (ΨXu,ΨZu,ΨXV ,ΨZV ), where Ψ ≡

[Ψ′Xu,Ψ
′
Zu, vec(ΨXV )′, vec(ΨZV )′]′ ∼ N (0,Σ⊗Q), where Σ is positive definite.

3This implies that the first-stage F-statistic, F , is Op(1), what would explain why the mean of F
testing Π = 0 in equation (2) is small or moderate even if T is large.

6



To simplify exposition, the exogenous regressors X are projected out, by Frisch-Waugh

Theorem. Let Y ⊥ ≡MXY , Z⊥ ≡MXZ and V ⊥ ≡MXV . Also, let V ⊥t be the transpose

of the t-th row of V ⊥, and similarly for Z⊥t . The first-stage equation in (2) rewrites as

Y ⊥ = Z⊥Π + V ⊥ (5)

Furthermore, define Ω ≡ QZZ − QZXQ
−1
XXQXZ = QZ⊥Z⊥ , where QZ⊥Z⊥ ≡ E[Z⊥t Z

⊥
t
′]

and Ω̂ ≡ Z⊥′Z⊥/T . Finally, let Π̂T = (Z⊥′Z⊥)−1Z⊥′Y ⊥ denote the OLS estimator of Π

in equation (5).

Ganics et al. (2018) develop their confidence intervals for the strength of identification

based on the concentration parameter,4 which is defined as

µ2
t,K2
≡ 1

K2

Π′Z⊥′Z⊥Π/σV V
p→ 1

K2

C ′ΩC/σV V ≡ µ2
K2

(6)

As Stock et al. (2002) note, a useful interpretation of µ2
K2

is in terms of the first-stage

F-statistic, F . If we let F̃ denote the infeasible counterpart of F (computed using the

true σV V ), then K2F̃
d→ χ2

K2
(K2µ

2
K2

) and E[F̃ ] = µ2
K2

+ 1. Therefore, when T grows, F

and F̃ become increasingly closer. In that case E[F ] ∼= µ2
K2

+ 1, so that F − 1 can be

thought of as an estimator for µ2
K2

.

Ganics et al. (2018) provide two different approaches to obtain the confidence intervals

for the bias and size distortion: the non-central χ2 and the projection method. The

former is only applicable in cases where there is only one endogenous regressor, while

the latter is applicable in general cases with potentially multiple endogenous regressors.

However, they show by means of Monte Carlo simulations that in general the projection

method yields more conservative results, in the sense that the coverage rates are not as

close to the nominal levels as for the non-central χ2. For this reason, we will focus on

the non-central χ2 in the empirical analysis, and hence provide here the full derivation

for it, whereas only the intuition of the methodology for the projection method.

2.1 The Case of One Endogenous Regressor

The non-central χ2 method is essentially based on the asymptotic distribution of the

OLS estimator of Π in equation (5), Π̂T . Under Assumptions LΠ and M, its limiting

4Or the minimum eigenvalue of the concentration matrix, when there are multiple endogenous
regressors. See Cragg and Donald (1993) and Stock and Yogo (2005) for more on that.
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distribution is given by
√
T Π̂T

d→ N (C, σV V Ω−1) (7)

which by Slutsky’s theorem implies that

mT ≡ Ω̂1/2σ̂
−1/2
V V

√
T Π̂T

d→ N (Ω1/2Cσ
−1/2
V V , IK2) (8)

yielding that the statistic fT ≡ m′TmT is asymptotically distributed as

fT
d→ χ2

K2
(K2µ

2
K2

) (9)

Now, because the chosen parameter for the strength of identification is the concentration

parameter, and K2 is known, we simply need to obtain a confidence interval for the

noncentrality parameter of the χ2 distribution in equation (9).

In order to do so, one can simply follow Kent and Hainsworth (1995). In particular,

as the authors recommend, Ganics et al. (2018) use the ‘symmetric range’ method to

construct such confidence interval. The full derivation can be found in Appendix A of

Ganics et al. (2018). Applying this method we obtain CI
µ2K2
1−α ≡ [l

µ2K2
1−α, u

µ2K2
1−α], which is a

(1− α) level asymptotic confidence interval for µ2
K2

. Also, define

lb1−α ≡ b(u
µ2K2
1−α;n,K2) ub1−α ≡ b(l

µ2K2
1−α;n,K2) (10)

ls1−α ≡ s(u
µ2K2
1−α;n,K2) us1−α ≡ s(l

µ2K2
1−α;n,K2) (11)

where b(·; ·) and s(·; ·) denote the bias and the size distortion of the 2SLS estimator,

respectively.5 These constitute the endpoints of the (1−α) level asymptotic confidence

intervals for the bias (equation (10)) and size distortion (equation (11)).

The main result is summarized in Proposition 1 of Ganics et al. (2018), which we proceed

to reproduce. Under Assumptions LΠ and M, CI
µ2K2
1−α is an asymptotically valid (1− α)

level confidence interval for µ2
K2

, that is

lim
T→∞

P
(
µ2
K2
∈ CI

µ2K2
1−α

)
= 1− α (12)

Furthermore, [lb1−α, u
b
1−α] and [ls1−α, u

s
1−α] are (1−α) level asymptotic confidence intervals

5Note that the bias and size distortion are decreasing functions, as explained below.
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for the bias and size distortion, respectively. Formally:

lim
T→∞

P
(
b(µ2

K2
;n,K2) ∈ [lb1−α, u

b
1−α]

)
= 1− α (13)

lim
T→∞

P
(
s(µ2

K2
;n,K2) ∈ [ls1−α, u

s
1−α]

)
≥ 1− α (14)

The equality in equation (13) follows by the result in Theorem B2 in Skeels and Wind-

meijer (2016), who prove that in the case we are considering of one endogenous regressor,

the bias b(µ2
K2

; 1, K2) is a strictly decreasing continuous function of µ2
K2

. Moreover, the

simulations in Stock and Yogo (2005) suggest that the size s(µ2
K2

;n,K2) is also strictly

decreasing, what means that the weak inequality in (14) will turn into an equality, and

thus the proposed asymptotic confidence interval will not be conservative.

2.2 The Case of Potentially Multiple Endogenous Regressors

The projection method is based on the projection argument developed by Dufour (1990,

1997). The intuition behind this approach is that given a confidence set Cµ(α) with

level (1 − α) for the parameter vector µ, one can obtain confidence sets for general

transformations g in Rm of this vector. Since s ∈ S ⇒ g(s) ∈ g(S) for any set S, we

have

P
(
µ ∈ Cµ(α)

)
≥ 1− α =⇒ P

(
g(µ) ∈ g(Cµ(α))

)
≥ 1− α (15)

where g(Cµ(α)) = {s ∈ Rm : ∃µ ∈ Cµ(α), g(µ) = s}. Hence g(Cµ(α)) is a conservative

confidence set for g(µ) with level (1−α). However, computing g(Cµ(α)) may in general

be a costly numerical exercise (see, for instance, Dufour and Jasiak (2001)).

Ganics et al. (2018) use this approach by exploiting the mapping from the parameter

summarizing the strength of identification to the bias and size distortion. In particular,

the parameter for the strength of identification they use in this case is the minimum

eigenvalue of the concentration matrix, of which, as Stock and Yogo (2005) show, the

worst-case asymptotic bias relative to the OLS estimator and worst-case asymptotic

size distortion of the associated Wald test – where the worst-case corresponds to the

maximum of these quantities over all possible degrees of simultaneity between the error

terms in equations (1) and (2) – are continuous and decreasing functions, albeit no

closed-form expression is known for a general number of endogenous regressors.
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3 Package girtest in R

One of the main motivations of this project is not only to illustrate why we think this

new approach is interesting, but also to facilitate other researchers its implementation in

their own projects. We have developed a statistical package in the statistical computing

software R that directly computes the above derived test (section 2.1). This section

introduces the package.

The R package girtest contains the function girtest. This function allows to retrieve

three different 95% asymptotic level confidence intervals: one for the concentration pa-

rameter; one for the bias of the 2SLS estimator; and one for the size distortion of the

associated Wald test. It takes two arguments: the F-statistic of the first-stage regres-

sion on the strength of identification, Fstat, and the number of instruments (excluded

exogenous variables) used, K_2. The critical values for the bias and size distortion are

obtained from Appendix D in Ganics et al. (2018), Table D.7 and Table D.10, respec-

tively. It must be noted that such function is only applicable in homoskedastic settings

where there is only one endogenous regressor.

The first time the function is to be used, the package needs to be installed and loaded.

This procedure slightly differs from the standard one because the package is (for now)

uploaded on GitHub, instead of CRAN, since the latter requires a long procedure of offi-

cial validation. The process is still very simple though. First install and load the package

devtools, by typing install.packages("devtools") followed by library(devtools).

Now we are ready to install our package girtest. To install it, we need to call the

package stored in the GitHub repository “girtest” of the user OriolGC. Run the com-

mand install_github("OriolGC/girtest") to install the package and load it with

library(girtest).6 Now the function is ready to be used.

The utilisation procedure is extremely simple. First, the researcher estimates the first-

stage regression and obtains the standard F-statistic. Then, knowing how many instru-

ments are being used, she fills in the arguments of the function with that information.

Here we present a very simple example. Suppose the researcher obtains an F-statistic

of 14.6 in the first-stage regression, when using 4 instruments. Then, she would type

6As usual, the library(girtest) command is required every time R is opened.
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girtest(Fstat = 14.6, K_2 = 4) in the R command window.7 In that case, the fol-

lowing output is printed:8

An important aspect we have taken into account is that not all applied researchers

tend to use R, what means that they probably estimate the first-stage regression in

another programming language. For this reason, we have decided the girtest function

not to be a direct postestimation command (taking directly the F-statistic from the

command ivreg in R, or the number of instruments) but we have rather allowed that

any researcher were able to introduce their estimated parameters, maybe from other

computing programs. We believe this makes the implementation of the test even easier,

and makes sure that the lack of knowledge in R programming is not a restriction for its

computation.

3.1 Performance Test of the girtest Function

Before moving on to the empirical section, we first demonstrate the good performance

of the R function we have constructed. To do so, we replicate Table 6 in Ganics et al.

(2018). The results are shown in Figure I.

(a) Table 6 in Ganics et al. (2018) (b) Replication using the function girtest

Figure I: Assessing the performance of the function girtest

From Table 6 in Ganics et al. (2018), we only need to focus on Panel B, which provides

the estimates using the non-central χ2 approach. We can see that the results using the

7The name of the arguments, ‘Fstat =’ and ‘K_2 =’, can indeed be ignored, but we include them
here to make the exposition clearer.

8For how to interpret the results, see sections 4.1 and 4.2 or Ganics et al. (2018).
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girtest function are very accurate up to the second decimal, which is the information

provided in Appendix D in Ganics et al. (2018) regarding the critical values. With this

result, we ensure the robustness of the analysis in the following section.

Last, mention that we have decided to provide a confidence interval for the concentration

parameter as well. We believe this is of important relevance because µ2
K2

can be shown

to play the role of the sample size (see Rothenberg, 1984). In order words, µ2
K2

is a

nuisance parameter which measures the amount of information the data have about the

parameter of interest β in equation (1). Hence if K2µ
2
K2

is large,
√
K2µ2

K2
(β̂2SLS − β)

will be approximately normal, whereas if K2µ
2
K2

is small, then the distribution is non-

standard, what comes across as crucial for inference.

4 Empirical Evaluation

In this section, we use the test from Ganics et al. (2018) described above to evaluate

the robustness of the results in two important empirical analyses. The first is Levine

et al. (2000) and the second is Angrist and Evans (1998). To do so, we replicate the

two papers in the two-stage least squares literature, and then we apply the proposed

girtest function to assess the instruments’ strength, and analyse how our conclusions

differ from those of the original authors.

4.1 Financial Intermediation and Growth

Determining whether the relationship between the role of financial intermediaries and

economic growth is mere correlation or can be interpreted as causal has been a widely

studied topic in previous literature. One of the main arguments to defend the economic

importance of financial institutions is their key role on offering products and contracts

that allow individuals to insure themselves against information asymmetries (see Boyd

and Prescott, 1986), therefore leading to a better allocation of resources. However, other

studies show that this better allocation might lower saving rates enough to cancel out

the positive effect. This important division in previous literature results has motivated

researchers to keep studying this topic. Identification of a causal effect could be key

for policy makers when modifying the current regulation. In this section we consider

the paper by Levine et al. (2000), which intends on evaluating whether the exogenous

component of financial intermediary development has an influence on economic growth.
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They try to correct for the endogeneity issues arising in the financial development mea-

sures via an IV approach, using as instruments legal origin indicators.

Levine et al. (2000) defend the validity of such approach because of the following reasons.

The exogeneity of the legal origin indicators, identifying English, German, French or

Scandinavian systems, is justified by the fact that these were primarily spread through

conquest and imperialism. The arguments in favor of the relevance condition are based

on the findings in Porta et al. (1998). Namely, they claim that differences in the legal

origin lead to differences in the legal rules covering secured creditors, the efficiency

of contract enforcement, and the quality of accounting standards, what characterize

financial intermediary activities.

Following their identification strategy,9 we consider the 2SLS approach where in the

first stage the legal origin of each country is used as an instrument for the indicators of

financial intermediary development, controlling also for the level of income. Four possi-

ble legal origins are considered due to their worldwide importance: English, Napoleonic,

German and Scandinavian. In the second stage, real per capita GDP growth is regressed

on two different measures of financial intermediary development, Liquid Liabilities (LL)

and Private Credit (PC), one at a time, together with a set of controls conditioning the

information set. In particular, the model takes the following form:

yi = α + βEi + γ′Xi + εi (2nd stage)

Ei = π0Scandi + π1Geri + π2Engi + π3Fri + δInci + ηi (1st stage)

where yi is the real per capita GDP growth rate of country i. The endogenous mea-

sures of financial development are Ei = {PCi, LLi}, where PCi is the credit by deposit

money banks and other financial institutions to the private sector divided by GDP,

times 100, and LLi is the liquid liabilities of the financial system (currency plus demand

and interest-bearing liabilities of banks and nonbank financial intermediaries) divided

by GDP, times 100. The vector of controls, based on the “simple conditioning infor-

mation set”, is represented by Xi. All the regressors in the first-stage regression are

dummy variables indicating the legal origin of the country, except for Inci, which is

the logarithm of real per capita GDP in 1960. Namely, Scandi, Geri, Engi and Fri

indicate Scandinavian, German, English and Napoleonic legal origin, respectively. The

9Although they estimate the model via GMM, they explicitly indicate in their footnote 10 that “the
2SLS procedure produces the same conclusions”.
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parameters εi and ηi are the error terms.

Table I: Financial Intermediation and Growth

Private Credit Liquid Liabilities
2SLS estimate (standard error) 2.52 (0.81) 1.72 (0.84)
95% Confidence interval for bias [0.03 ; 0.24] [ 0.03 ; 0.24 ]
95% Confidence interval for size distortion [0.05 ; 0.31] [ 0.05 ; 0.27 ]
F-statistic 5.85 6.14
Critical value (20% bias) 6.46 6.46
Critical value (30% bias) 5.39 5.39
Critical value (20% size distortion) 9.54 9.54
Critical value (25% size distortion) 7.80 7.80

Note: Following the notation in section 2, here we have n = 1 and K2 = 3. The upper panel
reports the confidence intervals for the bias and size distortion in the Levine et al. (2000) economic
growth regressions. The lower panel displays the first-stage F-statistic and the corresponding
critical values (at the 5% significance level) for the bias and size distortion (nominal level for the
Wald test is 5%) following Stock and Yogo (2005). Critical values in bold correspond to strong
instruments. The 2SLS estimators are computed under the “simple conditioning information set”
considered in Levine et al. (2000).

The estimation results are displayed in table I. The upper panel shows the 95% level

confidence intervals for the bias of the 2SLS estimator and the size distortion of the

associated Wald test. Under either endogenous variable, the results suggest a bias of

the 2SLS estimator between 3% and 24%. At the same time, we estimate a size distortion

between 5% and 31%, when using Private Credit, whereas a size distortion between 5%

and 27% when using Liquid Liabilities. Applied researchers might not feel comfortable

dealing with such numbers; for instance, realizing that your test has a 31% larger size

than advertised. We cannot therefore conclude that the instruments for the legal origin

of a given country are strong under any of the two specifications in order to explain

economic growth, meaning that inference needs to be taken with caution.

The lower panel of the table reports the results for the binary testing procedure, based

on the critical values of the first-stage F-statistic by Stock and Yogo (2005). We see that

there is no evidence to reject the null at the 5% significance level that asymptotically

the bias of the 2SLS estimator is at most 20% of the bias of the OLS in the worst case.

However, the null at the 5% level that the bias of the 2SLS estimator is at most 30%

of the bias of the OLS in worst case is rejected. Likewise, there is no evidence to reject

the null that when performing a Wald test at the 5% nominal level, asymptotically the

test would have a 20% or 25% larger size than claimed in the worst case. The results
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from this approach coincide with those of the confidence intervals.

Given the analysis using both procedures, the researcher would have well-founded evi-

dence to suspect that the instruments are indeed weak. This contrasts the conclusions

in the original paper, where they claimed that the exogenous component of financial

intermediary development is positively associated with economic growth, and this “is

not due to potential biases induced by omitted variables, simultaneity or reverse cau-

sation”. Even the effect on economic growth of “their preferred indicator” of financial

intermediary development, Private Credit, fails to be consistently estimated under this

setting because of weak identification.

4.2 Children and Their Parents’ Labor Supply

Research on the labor-supply consequences of childbearing is important for a number of

theoretical and practical reasons, but complicated because of the endogeneity of fertility.

Different approaches have been proposed to deal with such issue, but none has managed

to steer clear of the skepticism regarding the causal interpretation of the results. Here

we consider the analysis by Angrist and Evans (1998). They mainly contribute to

the literature on fertility and labor-supply by proposing a new instrumental variables

strategy based on the sex mix to resolve this endogeneity problem.

Angrist and Evans (1998) aim at analyzing the effects of childbearing on (mainly mar-

ried) women’s labor-supply outcomes. To that end, they analyze the effect of having

more than two children on the outcomes hours worked, hours worked per week, labor

income and whether the parent worked during that year. To account for the endogene-

ity of having more than two children, the sex composition of the first two children is

used as instrument(s). They claim this instrument approach is valid: the exogeneity

condition is defended by arguing that the sex of the child is a random assignment. As

for the relevance condition, what we study here, they point to the growing evidence that

families with children of the same sex are more likely to have a third one.

The estimation strategy of the paper is 2SLS. In the first stage, they control for the effect

of the sex mix on the decision of having more than two children, in order to consistently

estimate the effect of having more than two children on labor-supply variables of the

parents, in the second stage. In particular, the model we consider for replication is the
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following:

yi = α′0wi + π1s1i + β1xi + εi (2nd stage)

xi = π′0wi + π2s1i + γ0(Twoboysi) + γ1(Twogirlsi) + ηi (1st stage)

where yi is the number of weeks worked, xi is the endogenous regressor indicating

whether the woman has more than two kids, sji is a dummy for the jth child being

a boy, such that Twoboysi = s1is2i and Twogirlsi = (1− s1i)(1− s2i), wi is a vector of

exogenous regressors, and ηi and εi are the error terms.

One may have doubts whether is it true that families with children of the same sex are

more likely to have a third, and hence suspect that the instruments may not be strong

enough. Computing the first-stage F-statistic for the null hypothesis of no identification,

we find a value of F = 715.13.10 The confidence intervals for the bias and size distortion

of the 2SLS estimator and the associated Wald test in this model, computed using the

girtest function, are shown in table II.

Table II: Children and Their Parents’ Labor Supply

2SLS estimate (standard error) -5.16 (1.20)
95% Confidence interval for bias [0.00; 0.00]
95% Confidence interval for size distortion [0.00; 0.00]
F-statistic 715.13
Critical value (5% bias) 9.02
Critical value (5% size distortion) 19.93

Note: Following the notation in section 2, here we have n = 1 and
K2 = 2. The upper panel reports the confidence intervals for the bias
and size distortion in the Angrist and Evans (1998) parent’s labor
supply regression; Table 6, column 6. The lower panel displays the
first-stage F-statistic and the corresponding critical values (at the 5%
significance level) for the bias and size distortion (nominal level for
the Wald test is 5%) following Skeels and Windmeijer (2016) and
Stock and Yogo (2005). Critical values in bold correspond to strong
instruments.

The lower panel of the table suggests that the proposed instruments are indeed strong

according to the binary testing procedure. Based on the critical values for the F-statistic

provided by Stock and Yogo (2005) and Skeels and Windmeijer (2016), we can reject

the null at the 5% significance level that asymptotically the bias of the 2SLS estimator

10Note that the original paper did not include the first-stage F-statistic, although the t-statistics on
individual parameters hinted at a strong significance.
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is at most 5% of the bias of the OLS in the worst case. Similarly, we can reject the

null that when performing a Wald test at the 5% nominal level, asymptotically the test

would have a 5% larger size than claimed in the worst case. The upper panel displays

the 95% confidence intervals for the bias and size distortion of the 2SLS estimator as

proposed by Ganics et al. (2018). The results are in line with the previous findings.

Note that given the almost zero-measure of the confidence intervals, we can claim that

the bias of the 2SLS estimator and size distortion of the associated Wald test are both

virtually non-existent.

The main conclusion from our analysis is that the researcher should in this case be con-

fident that the model does not suffer from weak identification and hence the standard

IV inference is reliable. Namely, under the assumptions of the original work, the instru-

ments Twoboys and Twogirls satisfy the relevance condition needed to be considered

valid instruments for the fertility indicator of having more than two children.

To finish with the discussion of this empirical case, we believe important to point out

the sentence “under the assumptions of the original work” in the last paragraph. In

this analysis, we did not get into the detail of whether the entire model is the right

one to study the labor supply of the parents, but instead focused on the validity of

the instruments used. Indeed, some readers may be skeptical about having such a

large first-stage F-statistic, despite the large number of observations. The work in

Angrist and Evans (1998) relies on a very strong assumption, homoskedasticity, which

they never test or provide any justification for why to believe it holds. As mentioned in

section 1, Montiel-Olea and Pflueger (2013) and Young (2019) stress the fact that falsely

assuming a specific form of the error variance can mislead the researcher to think she

is dealing with strong instruments. Indeed, different tests for heteroskedasticity, such

as the ones proposed by Breusch and Pagan (1979), White et al. (1980) or Cook and

Weisberg (1983), which were available at that time, lead to reject the null hypothesis of

homoskedasticity in this sample, warning us about the reliability of the conclusions in

the original paper. The results are provided in the appendix.

5 Conclusions

In this paper we evaluate the performance of the novel test proposed by Ganics et al.

(2018) to assess the instruments’ strength in various linear homoskedastic IV contexts,
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and present an R function to directly compute it. The contribution of this paper is

mainly twofold: first, it should serve to evaluate the robustness of the empirical results

in two leading empirical analyses to the potential presence of weak instruments; and

second, it intends to help researchers to easily apply such tests in their own projects,

via the girtest function.

Applying recently proposed tests to previous literature unveils interesting new informa-

tion about the estimations and hence the conclusions drawn from them. In particular,

the findings in this paper suggest that, unlike what authors originally claimed, the na-

tional legal origin indicator is not strong enough to explain the financial intermediary

development, as measured by the private credit and liquid liabilities, leading to a mis-

interpretation of the effect of the latter on economic growth. Another remarkable issue

that has arisen, in line with the recent findings in Young (2019), is the importance of

the baseline assumptions to correctly interpret the estimation results: when estimating

the parents’ labor supply, it has shown to be crucial the parametric assumption on the

structure of the error variance to be able to rely on the final estimation results. In that

case, to guard oneself against misinterpretations, tests for the null of homoskedasticity

against different alternatives of the error variance structure should be carried out.

On top of that, recent literature suggests that IV estimates display both high sampling

uncertainty and high specification uncertainty, as minor specification changes can lead to

very different estimates (see Yogo (2004), Kleibergen and Mavroeidis (2009), Mavroeidis

(2010), Mavroeidis et al. (2014), Ganics (2017) or Barnichon and Mesters (2019), among

others). This could turn out to be decisive in the case considered in section 4.1, where the

data were averaged for the period 1960-1995, for each country. The implications would

be that the strength of the legal origin indicators as instruments for the development of

financial intermediaries was not constant across countries or time, but instead depended

on whether we took averages for a shorter/longer period, or excluded/included some

countries. More research needs to be done in this direction to disentangle such issue.

This project opens the door to future research in the field of weak instruments’ tests.

Further work can point, for instance, to the extension of the girtest package to include

the cases in Ganics et al. (2018) that have not been covered here, or its application to

test the statement in the previous paragraph.
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Appendix

Here we report the results of the different approaches to test the null hypothesis of

homoskedasticity against different error variance structures, in the paper by Angrist

and Evans (1998) considered in section 4.2. Namely, we consider three tests that were

available when the original paper was published and could have potentially been used

by the authors: the ones proposed by Breusch and Pagan (1979), White et al. (1980)

and Cook and Weisberg (1983).

In particular, the tests are applied to the errors of the first stage regression, which

remember that read as

xi = π′0wi + π2s1i + γ0(Twoboysi) + γ1(Twogirlsi) + ηi (1st stage)

The test proposed by Breusch and Pagan (1979) tests the null hypothesis that the error

variances are all equal versus the alternative that the error variances are a multiplica-

tive function of one or more variables. The first version considered assumes that the

regression disturbances are independent-normal draws. The results, displayed in Table

IIIa, clearly lead to reject the null hypothesis of homoskedasticity.

A more general version of the test by Breusch and Pagan (1979), suggested by Cook

and Weisberg (1983), which does not restrict the disturbances to be independent-normal

draws, is also used. However, even in this case we still reject the null hypothesis of

homoskedasticity, as can be seen in Table IIIb.

The standard Breusch and Pagan (1979) and Cook and Weisberg (1983) tests are proven

to be quite powerful in the presence of heteroskedasticity, but one may be skeptical to be

restricting the analysis to too specific forms of heteroskedasticity (those of linear form).

Still, if we use the White et al. (1980) test, which allows for more general (non-linear)

forms of heteroskedasticity, the results are similar, as shown in Table IIIc.

Test value 2086.31
P-value 0.0000

(a) Breusch and Pagan
(1979) test.

Test value 7503.19
P-value 0.0000

(b) Cook and Weisberg
(1983) test.

Test value 13691.70
P-value 0.0000

(c) White et al. (1980)
test.

Table III: Heteroskedasticity tests on Angrist and Evans (1998).
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