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Thesis Overview

Can estimating the time-varying topological features of a network lead to a portfolio simplification

process that enhances out-of-sample performance?

• We characterize international financial markets as partially correlated networks of stock returns.

• Mean-variance portfolios generally dissuade the inclusion of central stocks in the network.
• Interaction of a stock’s individual and systemic performance is complex.
• Time-varying correlation of these features is highly market-dependent.

• We then implement investment strategies that allocate wealth to a targeted subset of stocks, contingent
on the time-varying network dynamics.

• Targeted mean-variance allocation shown to enhance out-of-sample performance.
• Targeted 1/N allocation ineffective in enhancing out-of-sample performance.
• Evidence that portfolios are resilient to periods of major macroeconomic instability.
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Literature Review

• DeMiguel et al. (2009) evaluate the out-of-sample performance of Markowtiz mean-variance portfolios.

• Naı̈ve 1/N diversification rule outperforms MPT.

• Peng et al. (2009) design smart optimization shooting algorithm to estimate a sparse correlation matrix.

• Joint sparse estimation regression, building on Neighborhood Selection.

• Pozzi et al. (2013) implement network-based investment strategies that improve portfolio performance.

• Naı̈ve 1/N allocation to stocks on the periphery of the network.

• Peralta & Zareei (2016) design investment strategies taking into account time-varying network features.

• Target subset of stocks on network depending on time-varying network dynamics.
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Data

• Study focused in both developed and emerging markets for stocks lised in:

• UK (LSE), Germany (Deutsche Börse), Brazil (B3), India (NSE).

• Daily price data from 01/01/2001 to 31/12/2018.

• 120 most capitalized stocks.
• Active over entire period.
• Thompson Reuters.

• 3-month Treasury bill yields as proxy for “risk free” rate.

• Converted to daily values.
• For 4 different countries.
• Thompson Reuters.

4/36 July 23, 2019



Building a Partial Correlation Network
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Defining Partial Correlation

• Partial correlation measures the linear conditional dependence between two stocks yit and yjt controlling

for the correlation of other variables in the system.

• Accounts for interference caused by confounding variables, removing noisy correlations with variables of

interest: applicable to financial data.

ρij = Corr(yit , yjt |{ykt : k 6= i, j}) (1)

6/36 July 23, 2019



Joint Sparse Regression Model (SPACE)

• When estimating partial correlation matrices with large amounts of data, we require a shrinkage

estimator to create a sparse matrix of correlations.

• Peng et al. (2009) incorporate a LASSO-based joint sparse estimation technique with absolute value

penalty.

min

n∑
i=1

[
T∑

t=1

(
yit −

n∑
j 6=i

ρij

√
k̂jj

k̂ii
yjt

)2]
+ λ

n∑
i=2

i−1∑
j=1

|ρij | (2)

• Where,

• K = Σ−1

• λ = 0.2×T
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Computing Eigenvector Centrality

• Once we have built the partial correlation network, we are interested in the level of interconnectedness

(centrality ) of each node in the network.

• As defined by Bonacich (1972), eigenvector centrality assumes that the centrality of a vertex i (vi ) is

proportional to the weighted sum of the centralities of its neighbours (νj ).

νi ≡ λ−1ΣjΩijνj (3)
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Exploring Modern Portfolio Theory Using

Network Analysis

9/36 July 23, 2019



Tangency Portfolio as Partial Correlation Network

The Tangency Portfolio as a Partial Correlation Network.

UK Brazil

Germany India
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Tangency Portfolio as Partial Correlation Network

Optimal Weights for Tangency Portfolio Strategy.
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Implementing a ρ−Dependent Strategy
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Defining ρ

• ρ = corr(SR, eigencentrality), individual and systemic performance.

• ρ≤ ρ̃: wealth should be allocated to least central stocks.

• ρ > ρ̃: wealth should be allocated to most central stocks.

• ρ̃ = 0.2: in keeping with the work of Peralta & Zareei (2016).
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Visualizing the Time-Varying ρ

Time-Varying Correlation of Sharpe Ratio and Centrality (ρ).
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Investment Strategies

• The ρ-dependent strategies

• Tangency : allocate wealth according to MPT’s tangency portfolio on 20 selected stocks.

• Tang. Lim: same procedure as Tangency with short-sale constraints of 50% on selected stocks.

• Naı̈ve: allocate wealth evenly (1/N) across 20 selected stocks.

• The benchmark strategy

• Market : allocate wealth evenly (1/N) across all stocks, acting as proxy for the market.

• The reverse ρ-dependent strategy

• Reverses criteria for investing in 20 stocks for the ρ-dependent strategies.
• Control strategy: to show results not achieved by chance.
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Out-of-Sample Approach

• Calculate the at time t , the Sharpe ratio, centrality score and ρ for the period [t − 60, t].

• Rank stocks according to centrality score and pick the 20 least or most central stocks according to ρ.

• For the 20 selected stocks: calculate w∗t of each strategy and apply those weights to time t + 1.

• Repeat the process at every period time period (day).
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Results
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Overview

Overall, we show that in considering the

time-varying nature of partially correlated

networks, we can enhance out-of-sample

performance by simplifying the portfolio

selection process and investing in a targeted

subset of stocks.
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UK

UK 12-month Rolling Sharpe Ratios per Strategy.
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UK: 2006-2009

UK 12-month Rolling Sharpe Ratios 2006-2009.
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UK

Table: UK 12-month Rolling Mean Sharpe Ratios.

Period & Strategy Tangency Tang. Lim Naı̈ve Market

All sample ρ-strategy
0.2416***

(0.0153)

0.0206

(0.0151)

0.0340**

(0.0151)

0.0780***

(0.0151)

2006-2009 ρ-strategy
0.2711***

(0.0370)

0.0693**

(0.03641)

-0.4008***

(0.0378)

-0.3622***

(0.0375)

All sample reverse ρ
-0.7074***

(0.0171)

0.2502***

(0.0155)

0.1536***

(0.0154)

0.0780***

(0.0151)

2006-2009 reverse ρ
0.5954***

(0.0395)

0.6074***

(0.0395)

-0.3590***

(0.0375)

-0.3622***

(0.0375)

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.001, H0 : SR = 0
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Germany

Germany 12-month Rolling Sharpe Ratios per Strategy.
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Germany: 2006-2009

Germany 12-month Rolling Sharpe Ratios 2006-2009.
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Germany

Table: Mean 12-month Rolling Sharpe Ratios.

Period Strategy Tangency Tang. Lim Naive Market

All sample ρ-strategy
13.8069***

(0.1482)

22.4643***

(0.2403)

0.0643***

(0.0151)

0.2204***

(0.0152)

2006-2009 ρ-strategy
0.2935***

(0.0371)

0.2824***

(0.0371)

-0.6197***

(0.0397)

-0.4863***

(0.0385)

All sample reverseρ
-107,6349***

(1.1660)

-0.2485***

(0.0155)

0.04386***

(0.0153)

0.2204***

(0.0152)

2006-2009 reverse ρ
-298.8850***

(7.6866)

-0.8142***

(0.0420)

-0.6368***

(0.0399)

-0.4863***

(0.0385)

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.001, H0 : SR = 0
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Brazil

Brazil 12-month Rolling Sharpe Ratios per Strategy.
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Brazil: 2006-2009

Brazil 12-month Rolling Sharpe Ratios 2006-2009.
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Brazil

Table: Mean 12-month Rolling Sharpe Ratios.

Period Strategy Tangency Tang. Lim Naive Market

All sample ρ-strategy
-0.0474***

(0.0151)

-0.0072

(0.0151)

-0.2498***

(0.0153)

-0.6503***

(0.0168)

2006-2009 ρ-strategy
-0.5401***

(0.0389)

-0.3060***

(0.0372)

-0.0184

(0.0364

0.2410***

(0.0369)

All sample reverse ρ
-203.8342***

(2.19)

-1.1110***

(0.0194

-119.4047***

(1.2833)

-0.6503***

(0.0168)

2006-2009 reverse ρ
-280.1428***

(7.2000)

-0.3374***

(0.0420)

-170.9398***

(4.3960)

0.2410***

(0.0369)

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.001, H0 : SR = 0
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India

India 12-month Rolling Sharpe Ratios per Strategy.
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India: 2006-2009

India 12-month Rolling Sharpe Ratios 2000-2009.
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India

Table: Mean 12-month Rolling Sharpe Ratios.

Period Strategy Tangency Tang. Lim Naive Market

All sample ρ-strategy
0.0185

(0.0151)

0.1635***

(0.0152)

0.0469***

(0.0151)

0.0970***

(0.0151)

2006-2009 ρ-strategy
0.3620***

(0.0375)

0.4355***

(0.0380)

-0.3082***

(0.0372)

-0.2962***

(0.0371)

All sample reverse ρ
-61.5554***

(0.6580)

-0.4624***

(0.0160)

0.1473***

(0.0153)

0.0970***

(0.0151)

2006-2009 reverse ρ
-60.3890***

(1.5435)

-0.5256***

(0.0388)

-0.2215***

(0.0368)

-0.2962***

(0.0371)

∗p < 0.10, ∗ ∗ p < 0.05, ∗ ∗ ∗p < 0.001, H0 : SR = 0
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Conclusion and Future Research
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Conclusion

• Investing according to MPT dissuades the inclusion of highly central stocks, hence keeping portfolio

variances under control. However, it is market dependent.

• Stock’s individual performance and systemic performance can be complex. We find that the relationship

is time and market dependent.

• This motivates the analysis of the time varying corelation ρ, and invest accordingly.

• Based on the above, we implement and evaluate 3 ρ-dependent investment strategies following an

out-of-sample approach.
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Conclusion

• ρ-dependent Naı̈ve strategy:

• Significantly ineffective in delivering superior out-of-sample performance compared to the benchmark.
• This finding is at odds with that of Peralta & Zareei (2016).

• Markowitz ρ-dependent strategies:

• The strategies can significantly enhance out-of-sample performance whem compared to the benchmark.
• Markowitz ρ-dependent strategy can lead to portfolios that are resilient against major macroeconomic

instability.
• Tangency Limited portfolio can protect against large fluctuations in returns.
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Future Research

• Method of selection of the threshold ρ̃, for each market and time period.

• Adapting research to include all stocks over the period, whether IPO or delisted.

• Implement regulatory-dependent long and short constraints to the Markowitz ρ-dependent portfolios.

• Ability of the ρ-dependent investment strategies to enhance portfolio performances in times of

macroeconomic distress, by analyzing periods other the 2008 Financial Cirses.
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Thank You
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Appendix

yit = θ0 + Σi 6=jθij yjt + ui (4)

θij = − k ij

k ii
= ρij

√
k ii

k jj
(5)

ρij = − k ij

√
k ii k jj

(6)

min

n∑
i=1

[
T∑

t=1

(
yit −

n∑
j 6=i

ρij

√
k̂jj

k̂ii
yjt

)2]
+ λ

n∑
i=2

i−1∑
j=1

|ρij | (7)

36/36 July 23, 2019


	Data
	Building a Partial Correlation Network
	Exploring Modern Portfolio Theory Using Network Analysis
	Implementing a -Dependent Strategy
	Results

