

Estimating Time-Varying Network Effects with Application to Portfolio Allocation

Daniel A. Landau Gabriel L. Ramos

Barcelona Graduate School of Economics

Universitat Pompeu Fabra

July 23, 2019

Can estimating the time-varying topological features of a network lead to a portfolio simplification process that enhances out-of-sample performance?

- We characterize international financial markets as partially correlated networks of stock returns.
 - Mean-variance portfolios generally dissuade the inclusion of central stocks in the network.
 - Interaction of a stock's individual and systemic performance is complex.
 - Time-varying correlation of these features is highly market-dependent.
- We then implement investment strategies that allocate wealth to a targeted subset of stocks, contingent on the time-varying network dynamics.
 - Targeted mean-variance allocation shown to enhance out-of-sample performance.
 - Targeted 1/N allocation ineffective in enhancing out-of-sample performance.
 - Evidence that portfolios are resilient to periods of major macroeconomic instability.

- **DeMiguel et al. (2009)** evaluate the out-of-sample performance of Markowtiz mean-variance portfolios.
 - Naïve 1/N diversification rule outperforms MPT.
- Peng et al. (2009) design smart optimization shooting algorithm to estimate a sparse correlation matrix.
 - Joint sparse estimation regression, building on Neighborhood Selection.
- Pozzi et al. (2013) implement network-based investment strategies that improve portfolio performance.
 - Naïve 1/N allocation to stocks on the periphery of the network.
- Peralta & Zareei (2016) design investment strategies taking into account time-varying network features.
 - Target subset of stocks on network depending on time-varying network dynamics.

- Study focused in both developed and emerging markets for stocks lised in:
 - UK (LSE), Germany (Deutsche Börse), Brazil (B3), India (NSE).
- Daily price data from 01/01/2001 to 31/12/2018.
 - 120 most capitalized stocks.
 - Active over entire period.
 - Thompson Reuters.
- 3-month Treasury bill yields as proxy for "risk free" rate.
 - Converted to daily values.
 - For 4 different countries.
 - Thompson Reuters.

Building a Partial Correlation Network

- Partial correlation measures the linear conditional dependence between two stocks *y_{it}* and *y_{jt}* controlling for the correlation of other variables in the system.
- Accounts for interference caused by confounding variables, removing noisy correlations with variables of interest: applicable to financial data.

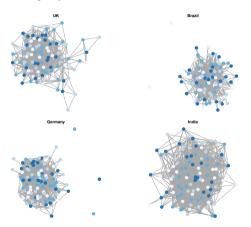
$$\rho^{ij} = Corr(y_{it}, y_{jt} | \{y_{kt} : k \neq i, j\})$$
(1)

- When estimating partial correlation matrices with large amounts of data, we require a *shrinkage estimator* to create a *sparse* matrix of correlations.
- Peng et al. (2009) incorporate a LASSO-based joint sparse estimation technique with *absolute value penalty*.

$$\min \sum_{i=1}^{n} \left[\sum_{t=1}^{T} \left(y_{it} - \sum_{j \neq i}^{n} \rho^{ij} \sqrt{\frac{\hat{k}_{ij}}{\hat{k}_{ii}}} y_{jt} \right)^{2} \right] + \lambda \sum_{i=2}^{n} \sum_{j=1}^{i-1} |\rho^{ij}|$$
(2)

- Where,
 - $K = \Sigma^{-1}$
 - $\lambda = 0.2 \times T$

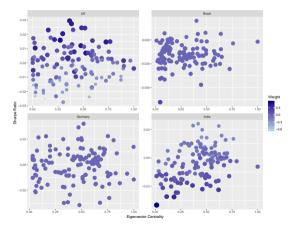
- Once we have built the partial correlation network, we are interested in the level of interconnectedness (*centrality*) of each node in the network.
- As defined by Bonacich (1972), eigenvector centrality assumes that the centrality of a vertex *i* (*v_i*) is proportional to the weighted sum of the centralities of its neighbours (*ν_i*).


$$\nu_i \equiv \lambda^{-1} \Sigma_j \Omega_{ij} \nu_j \tag{3}$$

Exploring Modern Portfolio Theory Using Network Analysis

Tangency Portfolio as Partial Correlation Network

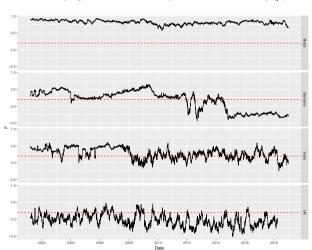
The Tangency Portfolio as a Partial Correlation Network.


Barcelona

Graduate School of Economics

Tangency Portfolio as Partial Correlation Network

Optimal Weights for Tangency Portfolio Strategy.


Implementing a ho-Dependent Strategy

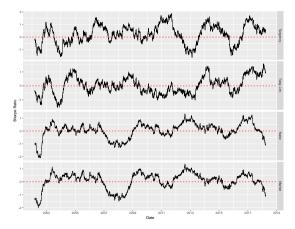
- $\rho = corr(SR, eigencentrality)$, individual and systemic performance.
- $\rho \leq \tilde{\rho}$: wealth should be allocated to **least** central stocks.
- $\rho > \tilde{\rho}$: wealth should be allocated to **most** central stocks.
- $\tilde{\rho}$ = 0.2: in keeping with the work of Peralta & Zareei (2016).

Visualizing the Time-Varying ρ

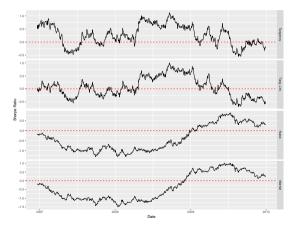
Time-Varying Correlation of Sharpe Ratio and Centrality ($\rho).$

- The ρ -dependent strategies
 - Tangency: allocate wealth according to MPT's tangency portfolio on 20 selected stocks.
 - Tang. Lim: same procedure as Tangency with short-sale constraints of 50% on selected stocks.
 - Naïve: allocate wealth evenly (1/N) across 20 selected stocks.
- The benchmark strategy
 - *Market*: allocate wealth evenly (1/N) across all stocks, acting as proxy for the market.
- The reverse ρ -dependent strategy
 - Reverses criteria for investing in 20 stocks for the ρ -dependent strategies.
 - Control strategy: to show results not achieved by chance.

- Calculate the at time *t*, the Sharpe ratio, centrality score and ρ for the period [t 60, t].
- Rank stocks according to centrality score and pick the 20 least or most central stocks according to ρ.
- For the 20 selected stocks: calculate $w *_t$ of each strategy and apply those weights to time t + 1.
- Repeat the process at every period time period (day).


Results

Overall, we show that in considering the time-varying nature of partially correlated networks. we can enhance out-of-sample performance by simplifying the portfolio selection process and investing in a targeted subset of stocks.



UK: 2006-2009

UK 12-month Rolling Sharpe Ratios 2006-2009.

Table: UK 12-month Rolling Mean Sharpe Ratios.


Period & Strategy	Tangency	Tang. Lim	Naïve	Market
	0.2416***	0.0206	0.0340**	0.0780***
All sample $ ho$ -strategy	(0.0153)	(0.0151)	0.0340** (0.0151) -0.4008*** (0.0378) 0.1536*** (0.0154) -0.3590***	(0.0151)
2006 2000 a stratagy	0.2711***	0.0693**	-0.4008***	-0.3622***
2006-2009 $ ho$ -strategy	(0.0370)	(0.03641)	(0.0378)	(0.0375)
	-0.7074***	0.2502***	, ,	0.0780***
All sample reverse $ ho$	(0.0171)	(0.0155)	(0.0154)	(0.0151)
2006 2000 reverse 0	0.5954***	0.6074***	-0.3590***	-0.3622***
2006-2009 reverse $ ho$	(0.0395)	(0.0395)	(0.0375)	(0.0375)

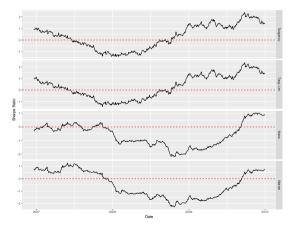
 $*p < 0.10, **p < 0.05, ***p < 0.001, H_0: SR = 0$

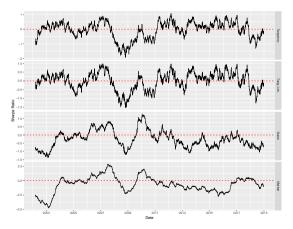
Germany

Germany 12-month Rolling Sharpe Ratios per Strategy.

Germany: 2006-2009

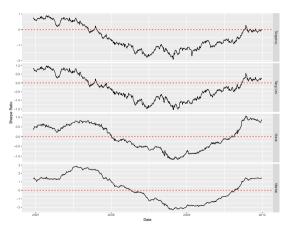
Germany 12-month Rolling Sharpe Ratios 2006-2009.




Table: Mean 12-month Rolling Sharpe Ratios.

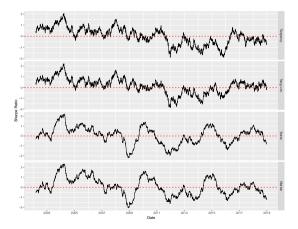
Period Strategy	Tangency	Tang. Lim	Naive	Market
	13.8069***	22.4643***	0.0643***	0.2204***
All sample $ ho$ -strategy	(0.1482)	(0.2403)	(0.0151)	(0.0152)
2006-2009 $ ho$ -strategy	0.2935***	0.2824***	-0.6197***	-0.4863***
	(0.0371)	(0.0371)	(0.0397)	(0.0385)
	-107,6349***	-0.2485***	0.04386***	0.2204***
All sample reverse $ ho$	(1.1660)	(0.0155)	(0.0153)	(0.0152)
2006-2009 reverse $ ho$	-298.8850***	-0.8142***	-0.6368***	-0.4863***
	(7.6866)	(0.0420)	(0.0399)	(0.0385)

 $*p < 0.10, **p < 0.05, ***p < 0.001, H_0: SR = 0$



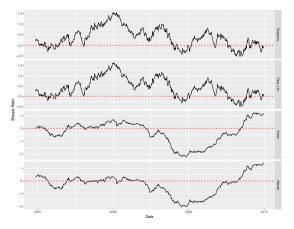
Brazil: 2006-2009

Brazil 12-month Rolling Sharpe Ratios 2006-2009.


Table: Mean 12-month Rolling Sharpe Ratios.

Period Strategy	Tangency	Tang. Lim	Naive	Market
All sample $ ho$ -strategy	-0.0474***	-0.0072	-0.2498***	-0.6503***
	(0.0151)	(0.0151)	(0.0153)	(0.0168)
2006-2009 $ ho$ -strategy	-0.5401***	-0.3060***	-0.0184	0.2410***
	(0.0389)	(0.0372)	(0.0364	(0.0369)
	-203.8342***	-1.1110***	-119.4047***	-0.6503***
All sample reverse $ ho$	(2.19)	(0.0194	.0194 (1.2833)	(0.0168)
2006-2009 reverse $ ho$	-280.1428***	-0.3374***	-170.9398***	0.2410***
	(7.2000)	(0.0420)	(4.3960)	(0.0369)

 $*p < 0.10, **p < 0.05, ***p < 0.001, H_0: SR = 0$


India 12-month Rolling Sharpe Ratios per Strategy.

India: 2006-2009

India 12-month Rolling Sharpe Ratios 2000-2009.

Table: Mean 12-month Rolling Sharpe Ratios.

Tangency	Tang. Lim	Naive	Market
0.0185	0.1635***	0.0469***	0.0970***
(0.0151)	(0.0152)	0.0469*** 0.152) (0.0151) 055*** -0.3082*** 0380) (0.0372) 624*** 0.1473*** 0160) (0.0153)	(0.0151)
0.3620***	0.4355***	• -0.3082***	-0.2962***
(0.0375)	(0.0380)	(0.0372)	(0.0371)
-61.5554***	-0.4624***	0.1473***	0.0970***
(0.6580)	(0.0160)	(0.0153)	(0.0151)
-60.3890***	-0.5256***	-0.2215***	-0.2962***
(1.5435)	(0.0388)	(0.0368)	(0.0371)
	0.0185 (0.0151) 0.3620*** (0.0375) -61.5554*** (0.6580) -60.3890***	0.0185 0.1635*** (0.0151) (0.0152) 0.3620*** 0.4355*** (0.0375) (0.0380) -61.5554*** -0.4624*** (0.6580) (0.0160) -60.3890*** -0.5256***	0.0185 0.1635*** 0.0469*** (0.0151) (0.0152) (0.0151) 0.3620*** 0.4355*** -0.3082*** (0.0375) (0.0380) (0.0372) -61.5554*** -0.4624*** 0.1473*** (0.6580) (0.0160) (0.0153) -60.3890*** -0.5256*** -0.2215***

 $*p < 0.10, **p < 0.05, ***p < 0.001, H_0$: SR = 0

Conclusion and Future Research

- Investing according to MPT dissuades the inclusion of highly central stocks, hence keeping portfolio variances under control. However, it is market dependent.
- Stock's individual performance and systemic performance can be complex. We find that the relationship is time and market dependent.
- This motivates the analysis of the time varying corelation ρ , and invest accordingly.
- Based on the above, we implement and evaluate 3 ρ-dependent investment strategies following an out-of-sample approach.

ρ-dependent *Naïve* strategy:

- Significantly ineffective in delivering superior out-of-sample performance compared to the benchmark.
- This finding is at odds with that of Peralta & Zareei (2016).

• Markowitz ρ -dependent strategies:

- The strategies can significantly enhance out-of-sample performance whem compared to the benchmark.
- Markowitz ρ-dependent strategy can lead to portfolios that are resilient against major macroeconomic instability.
- Tangency Limited portfolio can protect against large fluctuations in returns.

- Method of selection of the threshold $\tilde{\rho}$, for each market and time period.
- Adapting research to include *all* stocks over the period, whether IPO or delisted.
- Implement regulatory-dependent long and short constraints to the Markowitz ρ -dependent portfolios.
- Ability of the ρ-dependent investment strategies to enhance portfolio performances in times of macroeconomic distress, by analyzing periods other the 2008 Financial Cirses.

Thank You

$$y_{it} = \theta_0 + \sum_{i \neq j} \theta_{ij} y_{jt} + u_i \tag{4}$$

$$\theta^{ij} = -\frac{\kappa^{ij}}{\kappa^{ii}} = \rho^{ij} \sqrt{\frac{\kappa^{ii}}{\kappa^{ij}}}$$
(5)

$$\rho^{ij} = -\frac{\kappa^{ij}}{\sqrt{\kappa^{ii}\kappa^{jj}}} \tag{6}$$

min

$$\mathbf{n} \quad \sum_{i=1}^{n} \left[\sum_{t=1}^{T} \left(\mathbf{y}_{it} - \sum_{j \neq i}^{n} \rho^{ij} \sqrt{\frac{\hat{k}_{ij}}{\hat{k}_{ii}}} \mathbf{y}_{jt} \right)^{2} \right] + \lambda \sum_{i=2}^{n} \sum_{j=1}^{i-1} |\rho^{ij}| \tag{7}$$