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Abstract

Using firm-level data from Spain, we investigate robot abandonment, a phe-

nomenon neglected by the literature, and find that a substantial proportion of robot

adoption is non-permanent. We also find that (i) firms are most likely to derobotize

shortly after robotization; (ii) derobotization rates are higher among smaller firms;

and (iii) labor demand falls after derobotization. We develop a model of reversible

automation in which firms learn the costs of using robots only after they first adopt

them. We simulate a panel of firms that match the data and demonstrate that analyses

of automation which ignore abandonment can overestimate the effects of automation.
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1 Introduction

Robots have emerged as a remarkable feature of modern production. Around the world,

and especially in high-tech economies, the demand and adoption of industrial robots have

increased dramatically (Autor, 2015; Brynjolfsson & McAfee, 2014; Koch et al., 2019).

However, the abandonment of robots in the production process (henceforth referred to

as derobotization or deautomation) has been less discussed. We find that a substantial

proportion of manufacturing firms deautomate, a fact which has been overlooked by the

literature. We propose a model of automation that allows firms to not only adopt robots

but also to abandon them. We calibrate our model and closely match the behavioral distri-

bution of automation in Spanish firm-level data. In our simulations, most firms never

automate, but of those which do, approximately two-fifths stay automated, two-fifths

deautomate (and never automate again), and one fifth switch back and forth.

In our investigation, we use data from SEPI Foundation’s Encuesta sobre Estrategias Em-

presariales (ESEE), which annually surveys over 2000 Spanish manufacturing firms on

business strategies, including on whether the firms adopt robots in their production line.

Extending the analysis of Koch et al. (2019), we document three major facts on derobo-

tization. First, firms that derobotize tend to do so quickly, with over half derobotizing

in the first four years after adoption. Second, derobotizing firms tend to be relatively

smaller. Third, firms that abandon robots demand less labor and experience an increase

in their capital-to-labor ratios. We hypothesize that the prompt abandonment of robots is

indicative of a learning process in which firms robotize production with expectations of

higher earnings, but later learn information which causes them to derobotize and adjust

their production accordingly.

With this in mind, we propose a dynamic model of manufacturing firms that allows firms

to both adopt robots and later derobotize their production. In our model, firms face a

sequence of optimal stopping problems where they consider whether to robotize, then

whether to derobotize, then whether to robotize again, and so on. The production tech-

nology in our model is micro-founded by the task-based approach common in this liter-

ature, where firms assign tasks to workers of different occupations as well as robots (as

opposed to the factor-augmenting approach). We assume two occupations, that of low-

skilled and high-skilled workers, where the latter workers are naturally more productive

than the former. When firms robotize, both the firm’s overall productivity and the relative

productivity of high-skilled workers increases, but the relative productivity of low-skilled

workers decreases. In addition to observing this productivity increase, firms which robo-

tize also learn the total cost of maintaining robots in production which may be greater than

their initial expectations. At any point in time, firms can return to the derobotized regime
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Figure 1: The distribution (left) of firms by robotization behavior, and the distribution
(right) of firms’ derobotization behavior (if they derobotize). The data from ESEE is in
gray, while the calibrated simulation of our model is in blue.

but now with the knowledge of the costs of robotization, and a lower cost of reautomation

since we assume firms retain the infrastructure of operating robots in production.

We simulate a panel of manufacturing firms in the model closely matching our findings

in the data. Indeed, our simulations show that larger and more productive firms are more

likely to robotize and that the firms which derobotize tend to be less productive. Our cal-

ibration of the model can accurately explain and reproduce the behavioral distribution of

automation across firms in the data (see Figure 1). We conclude that omitting derobotiza-

tion from our analysis can lead to an overestimation of the effects of automation.

The structure of the paper is straightforward. In Section 2, we offer a brief overview of

the latest literature on robots and automation in economics. In Section 3, we detail our

look into the ESEE dataset and elaborate on the trends of derobotization across Spanish

manufacturing firms. In Section 4, we formally introduce our model and explicitly define

the structure of firms and robot adoption. In Section 5, we analyze our model through

the results of our calibrated simulation and compare the outcomes of our model with

that of a permanent adoption baseline, as well as layout crucial parametric assumptions

particular to Spanish firms. Finally, in Section 6, we discuss the policy implications of our

results and conclude by offering insight on future research as well as the shortcomings of

our investigation. Appendices are available to the reader, the contents of which will be

referenced throughout the paper.
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2 Literature review

Like most recent papers in the literature, the firm’s production technology in our model

comes from Acemoglu and Autor’s (2011) paper on task-based production. In that pa-

per, the authors argue that the neoclassical factor-augmenting approach to production is

insufficient to explain key dynamics in the labor market, specifically how technological

innovations may displace low-skilled workers and expand the offshoring of labor. They

propose modeling production instead through a task-based approach, where firms assign

a set of tasks to be completed by workers and capital (in this case, through automation),

while other tasks can be completed by labor alone. This approach is able to capture these

key dynamics and, after being standardized by Acemoglu and Restrepo (2018a), has be-

come the workhorse model of the robots and automation literature in macroeconomics.

Our project closely follows a number of papers building from this approach, including

recent work from Acemoglu and Restrepo (2018b) and Acemoglu et al. (2020), though

mainly papers from Koch et al. (2019) and Humlum (2019). Most models tend to make

two simplifying assumptions, the first of which both these papers address: (i) robot adop-

tion is homogeneous across firms which implies that when a task becomes possible and

profitable to complete with only capital instead of labor, all firms immediately reassign

that task to capital; (ii) robot adoption is permanent which means that once a firm com-

pletes a task with robots, it will continue to do so in the future.

Koch et al. (2019) investigate heterogeneity in adoption by making minor modifications

to the workhorse task-based model and using a richer panel from the same ESEE dataset

we use.1 They show that larger and more productive firms adopt robots more frequently;

upon adoption, the differences between larger and smaller firms widen across time, with

significant job losses in non-robotized firms. They also find that robot adoption leads to

net job creation for both low- and high-skilled workers, a fact which we exploit to motivate

our model. Although not central to their paper, they also find that 38% of adopters in their

sample derobotize at some point, which directly motivates our investigation. Empirically,

our paper continues their work since we extend their analysis, focusing on abandonment

instead of adoption.

The paper from Humlum (2019) is the closest to our paper in terms of theory. He simu-

lates a dynamic general equilibrium setting where firms behave as if they solve an optimal

stopping problem, choosing whether to adopt robots or proceed with production in a non-

robotized state. The basic trade-off for firms in his paper is similar to ours: robotization

has an adoption cost which is stochastic, but guarantees certain improvements in produc-

1Due to the budget constraints of the Master Project, we based our analysis on a data-constrained panel
with fewer variables.

3



tivity. The production function in his model is tractable to value function iterations and is

micro-founded by the task-based approach from Acemoglu and Restrepo (2018a), which

allows him to estimate labor market dynamics in Denmark. The benchmark model from

which we extend is a special case of his model, where we narrow the number of occupa-

tions from three to two. We perform ostensibly the same simulations, in addition to the

simulations in our derobotization framework. The main difference between his paper and

ours is that automation is reversible in our model.

Recent works which are worth mentioning include papers by Acemoglu and Restrepo

(2017), Ocampo (2018), Frey and Osborne (2017), Brynjolfsson et al. (2018), and again,

Acemoglu et al. (2020). Acemoglu and Restrepo (2017) apply their task-based approach

to robots and find robust results that suggest robot adoptions are correlated with job loss in

commuter zones. Ocampo (2018) generalizes the theory of task-based production to allow

for an arbitrary number of occupations and tasks by solving an optimal transport problem,

which is an especially useful framework for understanding task assignment models. Frey

and Osborne (2017) estimate the propensity for future jobs to be replaced by capital (in

their own words, for jobs to be “computerized”) by using classification algorithms.2 Bryn-

jolfsson et al. (2018) cover similar ground by estimating the propensity for future jobs to

be replaced by machine learning algorithms and artificial intelligence. Acemoglu et al.

(2020) look at French manufacturing firms and find some of the same results from Koch et

al. (2019), confirming that robot adoption widens the gap between large and small firms,

but finding that the overall impact of robot adoption on industry employment is negative.

3 Firm-level facts on derobotization

The ESEE (Survey on Business Strategies, in English) is collected by the SEPI Foundation

each year, surveying Spanish manufacturing firms on details regarding their operations.

A more extensive survey is administered every four years, and between 2,000 and 2,600

firms participate in it. Crucially, it is this extensive form which tracks whether firms

employ robots in their production process.

We acquired data from the extensive survey each time it was administered, first in 1991

and then every four years between 1994 and 2014. The dataset is an unbalanced panel

which features both left- and right-censoring. Initially the dataset contains 15,929 obser-

vations across 5,588 firms, which reduces to 14,119 observations and 3,987 after exclu-

sions. These observations capture 958 robotizations and 755 derobotizations. A more

detailed description of the dataset and the variables used, including exclusion criteria,

2Interestingly enough, they estimate that economists are 43% computerizeable.
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Figure 2: Kaplan-Meier estimates of derobotization rates

The blue area provides the upper and lower bounds when incorporating left-censored data, while the red
line is the estimate when excluding left-censored data.

counts of behavior, and summary statistics, can be found in Appendix A.

3.1 Kaplan-Meier estimation

The duration of robotization states can be right-censored due to firms liquidating, ceasing

to participate in the survey, or because of the data collection ending in 2014. As a result,

directly counting the number of firms which report changing their robot use, as done

in Koch et al. (2019), will underestimate the true values of derobotization. In order to

determine which firms derobotize, conditional on the firms’ continued reporting, we use

a Kaplan-Meier survival estimator (KM) to evaluate the probability of derobotization in

every period.

Our KM estimates incorporate left-censored data to provide bounds on the cumulative

derobotization rate. We get an upper bound by assuming no gap between robotization and

entry into the data set, and a lower bound by assuming an infinite gap. Derobotization

rates are estimated only for the first four periods (sixteen years) after robotization, as

observations are too sparse to estimate further. These results are shown, along with an

estimate that excludes all left-censored data, in Figure 2.

The estimate which excludes left-censored data fluctuates outside the upper bound, sug-

gesting that non-left-censored data does not adequately capture derobotization rates. There-

fore, we use the midpoint between the upper and lower bounds as our best estimate for

true derobotization rates. We also conduct this analysis for robotization rates over five pe-

riods. Details of the robotization and derobotization analyses can be found in Appendix

A.

Using the KM estimates for rates of robotization and derobotization, we calculate the per-
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centage of firms expected to engage in different types of robotization behavior over seven

periods, and compare these in Table 1 to the percentages expected from naive counting.

The impact of right-censoring on suppressing derobotization rates stands out as a major

difference. These results indicate the prevalence of abandonment; ex-ante we expect it to

occur among 19.28% of all firms and 53.56% of firms who robotize:

Fact 1. A substantial proportion of robot adoption is non-permanent.

Table 1: Robotization Behaviour

KM Estimates Naive Estimates
Never Automated 64.01% 58.52%
Only Automated 16.71% 26.97%
Deautomated 16.05% 11.20%
Reautomated 3.23% 3.31%

The KM estimates are also used to calculate the expected timing of derobotization, shown

in Table 2 alongside an estimate without the right-censoring adjustments. Not only does

the right-censoring suppress derobotization rates, it also underestimates the expected time

before derobotization among the firms that do derobotize. Even for the KM estimates,

over half of all derobotizations occur in the period immediately following robotization,

and more than five in six occur within the first two periods.

Fact 2. Derobotization is most likely in the first periods after adoption.

Table 2: Derobotization Timing

Periods after Derobotization % Derobotization
Robotization (KM) (Naive)

1 50.97% 64.64%
2 33.58% 26.62%
3 9.79% 5.56%
4 5.66% 3.18%

3.2 Derobotization and firm size

To document the profile of derobotizing firms, we rely on survival analysis techniques

which account for both the time- and state-dependence of firms’ decisions. We restrict

our sample to firms which were not robotised when entering the survey and aggregate the

data across firms. As a result, we obtain data on the duration of robot use as well as the

median characteristics of the firms over the timeline.

To estimate the duration of robot usage, we use the Cox (1972) proportional hazards

model and define derobotization as an exit event. Explicitly, the hazard function for firm
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i takes the form

λ (ti|Xi) = λ0(ti)× exp
(

β1sizei +β2prevrobi +β3log(K/L)i

)
, (1)

where ti is the duration of firm i’s robot usage, λ0(ti) is the baseline hazard rate. sizei

is a categorical variable measuring firm size by the number of employees, prevrobi is a

dummy variable indicating whether the firm has robotized before, and log(K/L)i is the

logarithm of the firm’s capital-to-labor ratio (summarized by Xi).

The resulting estimates are presented in Table 3. Column 1 presents a bivariate regression

against firm size. Columns 2 to 3 have specifications which include previous robotization

and capital-to-labor ratios. Columns 4 and 5 have specifications where the firm’s size is

measured by total labor hours or capital, respectively.

Table 3: Duration of robot usage and firm size

(1) (2) (3) (4) (5)

size

From 100 to 500 -0.42∗∗∗ -0.42∗∗∗ -0.35∗∗

(0.15) (0.15) (0.15)

From 500 -0.47∗∗ -0.46∗∗ -0.44∗∗

(0.21) (0.21) (0.22)

prevrob -0.54∗ -0.47 -0.48 -0.50∗

(0.30) (0.30) (0.30) (0.30)

log(K/L) -0.13∗

(0.07)

log(capital) -0.12∗∗∗

(0.03)

log(hours) -0.15∗∗∗

(0.05)
Observations 786 786 777 777 777

The sample includes duration of robot usage for firms that: (a) were robotized at least once during 1991-
2014; (c) did not enter the sample being robotized. Baseline category of size is “Less than 100 employees”.
Capital is adjusted to 1991 prices. Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01.

In each specification, our estimates consistently show a negative duration dependence

as measured by the baseline hazard function (see Figure 10 in Appendix A.5). In the

first specification, the effect of the firm’s size on the hazard rate is negative and statisti-

cally significant. Adding the indicator on previous robotization, the coefficients on size
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still remain negative and significant. Moreover, there is also a negative effect of previ-

ous robotization on the hazard rate. Including the log capital-to-labor ratio decreases the

magnitude of the size coefficient but does not affect its significance level; on the other

hand, the coefficient on previous robotization becomes indistinguishable from zero. Fi-

nally, when we add alternative measures of size, the results remain unchanged. Overall,

our findings suggest a statistically significant positive correlation between firm size and

robot usage duration.

Fact 3. Larger firms are less likely to derobotize.

In addition, there is mixed evidence that firms which previously robotized are less likely

to derobotize. The intuition of Fact 2 may suggest the presence of a learning process in

which firms, after initial robot adoption, may learn new information which affect their

future robotization decisions. However, the inclusion of the capital-to-labor ratio absorbs

this effect and makes it statistically negligible.

We also provide several robustness tests (see Appendix A.3-A.4). To account for poten-

tial selection bias, we extend our sample and add firms which were already robotized

while entering the survey. With this extended sample, we are also able to control for

heterogeneity across industries.3 Likewise, we also measure the size of firms before der-

obotization events and estimate a pooled regression with a richer set of controls. All in

all, we conclude that the negative correlation between size and derobotization is robust

across different samples and estimation strategies.

3.3 Firm outcomes and event studies

Given the limitations of our data, we adopt a basic event study methodology to measure

changes in capital, total work hours, and the capital-to-labor ratio after derobotization.

We consider firms which robotize but do not switch back and forth, restricting our sample

to the post-robotization period. It is important to highlight that this analysis is conditional

on firms already having robotized.

We estimate the following equation:

yit = β1derobotizationit +µi + τt + εit , (2)

where yit is the outcome for firm i in time t, derobotizationit is a dummy variable for

derobotization, µi is the firm’s fixed effect over time, τt is a time fixed effect, and εit is an

3In our initial sample, there are, on average, 30 observations for each industry (20 industries), which
may suggest overfitting on our part.
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error disturbance. We estimate the response for when yit is the logarithm of respectively

capital, total work hours, and capital-to-labor ratio of the firm. The fixed effect from µi

accounts for post-robotization time-invariant firm characteristics which may include the

costs and efficiency of robot usage.4

Since our data has a four-year frequency, some firms could derobotize by the end of the

period which may affect the response with a short lag. To account for this, we modify

equation (2) and add lagged derobotization, so

yit = β1derobotizationit +β2derobotizationit−1 +µi + τt + εit . (3)

The results of our estimation are displayed in Table 4. For each outcome and specifi-

cation, we report the coefficients for current and lagged derobotization and compute the

cumulative effect of derobotization. In all regressions, standard errors are clustered at

the firm level. The specifications for capital report small and insignificant coefficients of

derobotization, while the specifications for total work hours report negative and statisti-

cally significant coefficients. In particular, the total number of work hours employed by

firms shrinks by approximately 9.5-15% in the eight years following derobotization.5 The

combination of both these responses induce the positive effect on capital-to-labor ratios

observed in specifications 5 and 6. Specifically, the capital-to-labor ratio of firms rises by

approximately 9.5-16% in the eight years following derobotization. We thus conclude:

Fact 4. Derobotization is correlated negatively with labor inputs and positively with

capital-to-labor ratios.

In general, these results are consistent with Koch et al. (2019) who find that robot adoption

leads to considerable productivity gain and net job creation for both low- and high-skilled

workers. Since their result imply short-term complementarity between labor and capital,

one can expect that firms would decrease the amount of labor after derobotization. On

the other hand, the lack of adjustment in the capital margin is less intuitive. This may be

explained by a change in capital structure after derobotization which cannot be captured

with the low-frequency data we have. We leave this avenue, together with examining

labor changes across occupations, for future research.

4To estimate the effects on labor and capital more accurately, it would be better to use the lagged re-
sponse as an instrument as it may provide information about shocks which affect selection in derobotization.
However, this is not feasible due to the significant loss of observations needed to use this instrument.

5We calculate the approximate effect of derobotization as eβ −1.
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Table 4: Derobotization and Firm Outcomes

log(capital) log(hours) log(K/L)

Specification (1) (2) (3) (4) (5) (6)

derobotizationt -0.00 -0.00 -0.09∗∗ -0.08∗∗ 0.09∗ 0.09∗

(0.06) (0.06) (0.04) (0.04) (0.05) (0.05)

derobotizationt−1 0.02 -0.06 0.06
(0.05) (0.03) (0.04)

cumulative effect 0.00 0.02 -0.09∗∗ -0.14∗∗ 0.09∗ 0.15∗∗

p-value of Wald test 0.98 0.88 0.03 0.01 0.05 0.02

Notes. The sample includes firms that: (a) are observed at least for 3 periods; (c) adopted robots over 1991-
2014; (d) did not switch back and forth. The first observation of a firm corresponds to a year when it was
observed using robots for the first time. The number of firms and observations are equal to 647 and 1822,
respectively. All regressions include time and firm fixed effects. Standard errors are clustered on firm level.
* p < 0.1, ** p < 0.05, *** p < 0.01.

4 Model

As in Humlum (2019), we consider a dynamic partial equilibrium model of manufacturing

firms. At every period, firms select the quantities of labor and intermediate inputs to use in

production as well as whether to use robot technology.6 Since our model is an extension

of his permanent adoption setting, we begin by introducing a stylized version of his model

and later allow firms to revert their automation in ours.

4.1 Baseline model with permanent adoption

Consider a manufacturing firm which employs capital and workers of different occupa-

tions. Time is discrete (t = 0,1,2, . . .) and future profits are discounted by the factor

β < 1. At every period, firms can produce without robots or adopt robots into production.

The firm’s objective is to maximize expected profits.

The firm’s output Yt is given by a task-based CES production function F(·|R,ϕ);7 explic-

itly,

Yt ≡ F(Mt ,Lt |Rt ,ϕt) := zHt(ϕHt ,Rt)
(

M
σ−1

σ

t + ∑
o∈O

zot(ϕot ,Rt)
1
σ L

σ−1
σ

ot

) σ

σ−1
. (4)

The firm demands labor Lt ∈ R|O|+ and intermediate inputs Mt ∈ R+. The set of occupa-

6We will use intermediate inputs interchangeably with capital.
7The task-based micro-foundation of this production function is available in Appendix B.
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tions O = {1,2} includes low-skilled (o = 1) and high-skilled workers (o = 2). Rt is a

binary variable which is 1 if the firm is using robots, and 0 if not. The baseline productivi-

ties of the firm are given by a vector ϕt = (ϕHt ,ϕ1t ,ϕ2t)∈R|O|+1 of mutually independent

exogenous stochastic processes. The firm’s Hicks-neutral productivity zHt and the relative

productivity of workers of different occupations zot are given by

zHt(Rt ,ϕt) := exp(ϕHt + γHRt), (5)

zot(Rt ,ϕt) := exp(ϕot + γoRt), (6)

where γH captures the effect of robot technology on the firm’s productivity, while γo

captures the effect of robot technology on a worker of occupation o. The parameter σ

has the traditional interpretation as the elasticity of substitution between factors. The firm

sells its output in the market at an iso-elastic price Pt = PM(YM/Yt)
1/ε , where PM is the

manufacturing price index, and YM is the aggregate manufacturing demand.8

The firm takes the vector of factor prices w ∈R|O|+1
+ as given. To shorten notation, define

Xt ≡ (Mt ,Lt) as a vector of inputs and πt(R,ϕ) as the firm’s per-period profits from choos-

ing Xt optimally, given the state of robotization and productivity.9 The firm’s decision to

robotize (or derobotize) production takes one period to be implemented; consequently, at

every period t, firms receive πt(Rt−1,ϕt). We assume that R0 = 0 so that firms always

start in a non-robotized stage. The firm can robotize production by purchasing robots

for a price pR ∈ R+ which is constant over time. Upon operation, robots are costly to

maintain with a per-period cost of CR + εR, where CR is the expectation of the cost and

εR is an independent zero-mean random variable, representing a firm-characteristic, time-

invariant cost shock that remains unknown until the firm robotizes.10 It captures the firm’s

inherent suitability for robotization, which is ex ante unknown to the firm. Once the firm

is robotized, it receives only robotized profits π(1,ϕ) for all periods forward, as is the

case in Humlum (2019).11

8In Humlum (2019), these parameters are time-varying processes. For simplicity (in the notation of that
paper), we set PMt = PM and YMt = YM .

9Formally, πt(R,ϕ) := maxX∈RO+1
+

{
PMY

1
ε

M F(X |R,ϕ) ε−1
ε −wT X

}
.

10The cost shocks in this stylized version are markedly different than the ones in Humlum’s. In his
framework, firms only face cost shocks for initial adoption whereas in our model, the initial adoption cost
is captured entirely by pR. In his model, firms can costlessly operate robots once adoption costs are paid.
Even so, before we introduce reversibility of automation, these differences are negligible. The fact that
firms in Humlum’s paper can never revert robotization means that the revealed information from our cost
shocks would not change the behavior of firms, since they only act on their ex-ante expectations. If we
were to include the cost shocks from Humlum in our permanent adoption framework, this would increase
the lumpiness of adoption but leave the incentives unchanged.

11We can unify this baseline with the model presented in Section 4.2 by assuming δP −→ ∞ and δS < ∞

in the extended framework, effectively removing the firm’s incentive to derobotize.
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The value of the firm when non-robotized is VI ≡max{V a
I ,V

i
I }where V a

I is the value when

Rt = 1 while V i
I is the value when Rt = 0. If the firm robotizes at period t, at period t +1

the value of the robotized firm is V (ϕt+1,εR). For every subsequent period, the value of

the firm then only varies with its productivity since robotization is irreversible.

Explicitly, the value functions of the non-robotized firm are described by the following

Bellman equations,

V a
I (ϕt ,εR) = πt(0,ϕt)− pR +βE[V (ϕt+1,εR)|ϕt ] (7)

V i
I (ϕt ,εR) = πt(0,ϕt)+βE[VI(ϕt+1,εR)|ϕt ], (8)

while the value function of the robotized firm are described by

V (ϕt ,εR) = πt(1,ϕt)− (CR + εR)+βE[V (ϕt+1,εR)|ϕt ,εR]. (9)

4.2 Robotization and derobotization (reversible adoption)

VR(φ, εR)

Va
I

Vi
I

Va
R

Vi
R

Va
D

Vi
D

π(1,φ) − (CR + εR)

π(0,φ)

VD(φ, εR)
π(0,φ)

−pR

−(1 − δS) ⋅ pR

+(1 − δP − δS) ⋅ pR

εRVI(φ, )

Figure 3: Overview of the structure and timing of the firm’s value functions.

The black section depicts the value function transitions of the baseline model, the gray section those of the
extensions of the full model. VR collapses to the simplified V in the baseline when δP −→ ∞ and δS < ∞.

We now enable firms to abandon robots by selling them at a lower price than the one

they paid. Indeed, the resale price is discounted by δP + δS, with δS,δP ∈ R+, so that

robotized firms sell at the price (1−δP−δS)pR > 0. The parameter δP is the depreciation

12



factor of used robots and the parameter δS is the fraction of setup costs of robot adoption

which is paid only when firms robotize for the first time. It captures the initial sunk costs

of robot adoption, for instance, the training of workers and other intangible investments,

that cannot be resold, but in contrast to regular depreciation δP, remain in place when

rerobotizing and thus need not be paid again.12 Therefore, when firms sell their robots,

the reselling price (1−δP−δS)pR is reflective of both aspects of depreciation. The firm’s

incentive to derobotize is straightforward: if cost shocks are significantly higher than

expected (or productivity shocks are significantly lower), then maintaining robots may

not be profitable, even with improved average productivity, and so firms would prefer to

revert to derobotized production.

Once firms are derobotized, they return to receiving derobotized profits but now with the

knowledge of the cost shock and the initial setup already paid. This latter fact is crucial

as it makes rerobotization less costly, and consequently, when firms rerobotize, they only

pay (1− δS)pR. These savings allow firms with high cost shocks and high productivity

shocks to switch back and forth between robotized and derobotized production.

Our model is summarized by Figure 3. The value of the robotized (or derobotized) firm

at period t is given by VR ≡max{V a
R ,V

i
R} (or VD ≡max{V a

D,V
i
D}) where V a

R (or V a
D) is the

value when Rt 6= Rt−1 (action) while V i
R (or V i

D) is the value when Rt = Rt−1 (inaction).

If the firm changes their regime at period t, they transition from VD to VR (or VR to VD).

They can do so every period, earning higher output profits when robotized but saving

costs when derobotized.

Explicitly, the value functions of the robotized firm are described by the following Bell-

man equations,

V a
R (ϕt ,εR) = πt(1,ϕt)− (CR + εR)+(1−δP−δS)pR +βE[VD(ϕt+1,εR)|ϕt ,εR], (10)

V i
R(ϕt ,εR) = πt(1,ϕt)− (CR + εR)+βE[VR(ϕt+1,εR)|ϕt ,εR] (11)

while the value functions of the derobotized firm are described by

V a
D(ϕt ,εR) = πt(ϕt)− (1−δS)pR +βE[VD(ϕt+1,εR)|ϕt ,εR] (12)

V i
D(ϕt ,εR) = πt(ϕt)+βE[VR(ϕt+1,εR)|ϕt ,εR] (13)

12Alternatively, setup costs can be thought of as installing the infrastructure to operate robots, assuming
it cannot (or will not) be resold and is costless to maintain.
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5 Simulation

We analyze the model introduced in Section 4 in two steps. First, we numerically solve the

Bellman equations (7) - (13) using value function iteration and obtain the policy functions

for robotization R as well as the input vector X . Second, we simulate a panel of firms

by using the policy functions on multiple time series of exogenous shocks to examine

the behavior of firms. Using these simulations, we match the findings in Section 3 and

generate event studies for robotization and derobotization. Furthermore, we contrast our

findings with the behavior and predictions of the baseline permanent adoption model.

5.1 Value function iteration

We begin by discretizing the exogenous state ϕ to Markov processes using the Rouwen-

horst (1995) method, as described by Kopecky and Suen (2010). We choose the support

of ϕo so that ϕ1 < ϕ2. Likewise, we set γ1 < 0 < γ2, since robotized firms in the data (as

analyzed by Koch et al.) employ more capital and high-skill labor (relative to low-skill

labor) than firms which are not robotized; our interpretation of this fact is that low-skilled

workers become less productive (relative to both high-skilled workers and intermediate

inputs) after robotization.13

One of the backbones of our calibration is the fact that we set σ > 1. In Humlum’s

simulations to match firm-level Danish data, he calibrates σ to be 0.493. However, in the

data from Spain, we find that robotized firms not only increase their overall labor demand,

but they also increase their low-skill labor demand, a fact which is also documented by

Koch et al. Therefore, high- and low-skilled labor are complements according to the

micro-data we observe, and it is paramount to set σ > 1.14

The resulting policy functions for R from value function iteration are shown in Figure 4

as action-inaction regions, dependent on the cost-type εR and the productivity profile ϕ .

With this figure, we are able to concisely capture the complete robot adoption behavior of

firms in the multi-dimensional state space. We use the Hicks-neutral baseline productivity

ϕH as an indicator for the size of the firm on the grounds that (as Humlum argues) higher

productivity, ceteris paribus, allows firms to employ more labor and capital and hence

leads to larger firms. Likewise, the converse can be argued so that large firms tend to

exhibit higher productivity.

According to the action regions of initially unrobotized firms VI , robot adoption happens

13Implicitly, the productivity of intermediate inputs is normalized to one and incorporated into zH(·),
making z1 and z2 represent the productivity of low- and high-skilled labor, relative to the intermediate.

14It’s worth remarking that, as Humlum documents, there are no good estimates (for now) of the micro
elasticity of substitution between workers in the task-based approach.
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Figure 4: Heatmaps of action-inaction regions
This figure illustrates the action-inaction regions implied by the value functions. The coloring corresponds
to the number of different cost types taking action in the associated state profile. The first row represents the
robotization decision of a firm that never automated (VI), the second the derobotization decision (VR) and
the last the rerobotization decision (VD). Note that the abandonment (readoption) action region of VR (VD)
for firms with cost shock realization ε ′R encompasses the action region for all firms with εR < ε ′R (εR > ε ′R).

in states with high productivity, and thus in particular among large firms.15 As a corollary,

firms are most likely to derobotize when productivity is low:

Observation 1. Less productive firms are more likely to derobotize.

Given the link between firm size and productivity, derobotization is more frequent among

small firms, which is consistent with Fact 3. We also observe, as intuition would suggest,

that firms with a greater characteristic cost εR are more likely to derobotize; this is addi-

tionally illustrated in Figure 5.

Our simulations exhibit two driving forces of derobotization: a productivity effect aris-

ing from a sequence of low productivity shocks ϕ , and a revelation effect arising from

learning about high characteristic costs εR of robotization.

We leave the heatmaps corresponding to the policy functions for inputs in Appendix C. In

short, our simulation finds conventional comparative statics consistent with our assump-

tions.

15This matches the already documented observation in the literature (Koch et al., 2019), that adoption is
positively correlated with firm size.
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Figure 5: Action-inaction region of cost-differing automated firms
The solid line represents the value of being robotized VR and comprises an action (left) and inaction region
(right). The action region for derobotization increases with realized costs εR.

Observation 2. Robotization increases the demand for all factor inputs and the following

facts are true:

1. An increase in ϕH increases the demand for all factor inputs.

2. An increase in ϕ1 increases the demand for low-skilled workers L1 and has no effect

on the demand for high-skilled workers L2 or the demand for intermediate inputs

M.

3. An increase in ϕ2 increases the demand for high-skilled workers L2 and has no

effect on the demand for low-skilled workers L1 or the demand for intermediate

inputs M.

Furthermore,

1. The labor ratio L2/L1 is increasing with robotization, increasing in ϕ2, constant in

ϕH , and decreasing in ϕ1.

2. The intermediate to labor ratio M/(L1+L2) is constant in robotization, constant in

ϕH , and decreasing in ϕo for all o ∈ O.

5.2 Time series simulation and event studies

After calibrating parameters, both our model and the permanent adoption model can al-

most perfectly match the fraction of automating firms in the data (see Figure 6). In order

to achieve the same outcome in both models, we reduce the price of robotization pR in the
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permanent adoption model to account for the increased risk of the cost shock (since deau-

tomation is not feasible). In addition, our reversible adoption model is able to replicate

the respective proportion of robotized firms that stay automated, deautomate, or automate

repeatedly. Remarkably, our simulations can also generate the derobotization patterns

consistent with Fact 2, with half of all derobotization occurring one period after roboti-

zation. Since the action regions for robotization and derobotization are on opposite ends

of the state space (cf. Figure 4) and the persistence of shocks on ϕH is relatively high,

the main drive for this prompt abandonment of robots must arise from the realization of

high robotization costs. Therefore, the revelation effect of derobotization is able to not

only plausibly explain our observations from the data qualitatively, but also closely match

those observations quantitatively.

Figure 6: Robotization and derobotization behaviour of firms in simulated time series.

5.2.1 The robotization event

Having established the suitability of our model to account for the robotization and der-

obotization behavior of firms, we turn to analyzing the effects of a robotization event.

As evident from Figure 7, there are two crucial differences between the reversible and

permanent adoption models:

Observation 3. The demand for factor inputs steadily declines in the periods following

robotization. If robot adoption is reversible, this decline is deeper.

Even though the robotization event increases the demand for all inputs (Observation 2), it

is preempted by periods of above-average productivity from robot adoption which regress

toward periods of average productivity and, as a result, lower input demands. Further-

more, the deepening effect of reversibility arises because firms which face high cost re-
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Figure 7: Robotization event in the simulated time series
Values represent the mean of those firms that robotized at least once. Firms that robotize either in the first or
last periods are excluded to properly trace the behaviour before and after the automation event. The period
the robotization happens are normalized to 0 for each firm.

alizations (or a sequence of low productivity shocks) would be better off derobotizing,

which causes further decline in productivity, and then, by Observation 2 again, causes a

decrease in demand.

Observation 4. If robot adoption is reversible, only the more productive firms stay robo-

tized.

We will refer to firms which stay robotized under the reversible adoption model as natural

adopters, as represented by the dashed gray line in Figure 7. The intuition of Observation

4 is straightforward: less productive firms are more likely to derobotize, leaving a posi-

tively biased (in demand) subsample of firms. Therefore, natural adopters have a higher

input demand compared to the setting in which all firms, regardless of their productivity,

are permanent adopters.

These differences have significant implications for relative factor demands. Although

relative demand for high-skill labor increases following robotization, the decline in the

labor ratio in the succeeding periods is sufficiently steep to return to prerobotization values

(see Section 5.2.2 for a longer discussion).

Furthermore, the permanent adoption model overestimates the increase of the intermediate-

low (M/L1) ratio following robotization. Notice that in our model the drop in low-skilled

labor (approximately 37.5%) over the five periods after robotization is less than the drop in

intermediate inputs (approximately 42%). In the permanent adoption model, these differ-

ences are much smaller, with drops of approximately 12.5% and 12% for low-skilled labor
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and intermediate inputs respectively. A similar observation follows for the intermediate-

labor ratio.

5.2.2 The derobotization event

Figure 8: Derobotization event in the simulated time series
Values represent the mean of those firms that derobotized, differentiating across how long it took for them
to do so. Black lines represent the mean of all the firms that derobotized at least once.

We extend our analysis to look at the firm’s dynamic behavior around derobotization,

summarized in Figure 8.

It should be noted that different firms in our model, hand-in-hand with firms in the data,

derobotize at different periods (see Figure 6 again); firms which abandon promptly do

so due to the revelation effect, which implores us to explore why firms derobotize in the

second period onward.

Observation 5. If firms take longer to derobotize, they do so following a sequence of low

productivity shocks.

This observation is clearly visible in the simulation but is masked by the behavioral dis-

tribution of derobotized firms. The firms which derobotize after the first period have a

decline in demand which is indicative of low productivity. On average, the revelation

effect overcrowds the reaction to the productivity effect; indeed, see that the mean firm

follows the trends of prompt abandonment. It is also evident that the derobotization event

in our model comes with a negative shock to input demand, confirming Fact 4. We con-

clude with a final observation:

Observation 6. Prior to the derobotization event, firms which do not promptly abandon
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exhibit lower L2/L1 ratios. Furthermore, derobotization causes a drop in labor demand

and (therefore) an increase in the relative productivity of intermediates.

For firms which robotize for longer periods, the decline in low-skill productivity is weaker.

In addition, our simulation also confirms Fact 4 as all firms which derobotize see sig-

nificant increases in their intermediate-labor ratio (note that the productivity effect has

crowded out the revelation effect past the first period). Therefore, the sequence of low

productivity shocks which trigger derobotization increase the relative productivity of in-

termediate inputs.

6 Conclusion

Contributing to the growing literature of automation and robotization, our paper analyzes

one aspect of adopting robots generally neglected, namely their abandonment.

As our first contribution, we empirically investigate this phenomenon using Spanish firm-

level data and document a series of facts on derobotization. In contention with the liter-

ature, we find that derobotization is an inherent feature of robot adoption as more than

two-fifths of firms abandon robots during their lifetime. Furthermore, the distribution

of derobotization is unevenly distributed across firm size and time: when derobotiza-

tion happens, it usually occurs within 8 years following adoption and affects small- to

medium-sized firms. We also find that once a firm derobotizes, it faces a drop in labor

demand, and as a result, an increasing in the intermediate-labor ratio.

We proposed a model of reversible robot adoption that was able to match the facts of

the data and captured reasons why firms both adopt and abandon their robots. In ad-

dition to the productivity effect we documented, we observe in simulations a revelation

effect brought on by ex-ante uncertainty regarding robotization. Our model is the first to

document both effects of derobotization by simply allowing firms to abandon in an envi-

ronment of stochastic productivity and learning-by-doing costs. Our simulations are able

to match the data, especially in generating the correct proportion of derobotizing firms.

Finally, simulations of our model of robot adoption hint at an overestimation of demand

effects from the current literature. In conjunction with the fact that firms derobotize in the

data, we argued that derobotization is a non-negligible behavior of firms. It is necessary,

at least to us, to take this phenomenon into account when analyzing automation and its

effect on the labor market and policy.

Particularly regarding policy, the conversation on automation has often focused on the

propensity (and sometimes inevitability) of workers’ displacement, something which our
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paper takes no stance on but provides some context. Clearly, the setting in which robots

outright replace workers is incomplete; the existence itself of firms derobotizing shows

that the existence of technology does not necessitate its widespread adoption.16 This

insight is valid for any adoption of technology, as has been obvious in the literature of

other sub-disciplines of economics, particularly in industrial organization and operations

research. Even if the idea of learning (as it is implemented in our model) is novel in this

particular literature, other papers have recognized that the matter is at least nuanced (see

Acemoglu and Restrepo’s (2018b) discussion on labor displacement).

It is apparent to us that any future research which seeks to model automation should

also model deautomation. Crucially, capturing prompt abandonment is necessary, but

models could incorporate other explanations. An improvement to our paper could include

modeling the revelation effect to include uncertainty over productivity instead of costs.

Moreover, further research is needed to analyze the full implications of derobotization, its

determining factors, and its implications in a general equilibrium framework in a fashion

similar to Humlum (2019). This will give greater insight on the effects of automation in

the labor market, especially how wages evolve with robotization.

16This is a basic economic insight, since our story suggests the rudimentary idea that costs are also part
of the equation.
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Appendix

A Firm-level facts on derobotization

A.1 Firm data and summary statistics

The ESEE asks firms to

State whether the production process uses any of the following systems:

1. Computer-digital machine tools;

2. Robotics;

3. Computer-assisted design;

4. Combination [sic] of some of the above systems through a central com-

puter (CAM, flexible manufacturing systems, etc.);

5. Local Area Network (LAN) in manufacturing activity.

The firm’s positive (or negative) response to “2. Robotics” determines whether it is iden-

tified as using robots.

Before any further adjustments, the dataset contains 15,929 observations across 5,588

firms. We first exclude observations in which robot use was not provided, which reduces

the number of observations to 15,730 across 5,511 firms. Then, we exclude firms with

less than two periods of data or with a gap on robotization, whether this is from a lack

of reporting or from the first exclusion we made. As our analysis focuses on the change

in robotization and the time between such changes, not knowing if firms switched during

a particular period makes it difficult to make conclusions about periods before and after.

This reduces the number of observations to 14,119 across 3,987 firms. Further exclusions

were made in specific analyses, which we point out where applicable.

Table 5: Starting robotization state and state changes.

State Unrobotized Unrobotized Robotized Robotized
Changes Start left-censored Start left-censored

0 1,343 (33.5%) 977 (24.9%) 388 (9.7%) 134 (3.3%)
1 231 (5.8%) 218 (5.4%) 180 (4.5%) 89 (2.2%)
2 77 (1.9%) 118 (2.9%) 52 (1.3%) 66 (1.6%)

3+ 15 (0.4%) 57 (1.4%) 9 (0.2%) 33 (0.8%)

We partition the firms between those which were robotized in the first year they appear in

the data, and those that were not. We count a state change when firms go from robotizing
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to derobotizing, or from derobotizing to robotizing. Some of the firms’ state changes

are left-censored by the survey starting in 1991. We further partition the panel of firms

between those which are left-censored and those who are not. A breakdown of state

changes is given by Table 5.

We also generate descriptive statistics in Table 6, which summarize the distribution of

capital, labor, and capital-to-labor ratios between firms of different robotization behaviors.

Table 6: Descriptive Statistics

Variable
All

Firms
Not

Robotized
Only

Robotized Derobotized
Back &
Forth

Hours Worked
(1,000s, Log) 4.78 (1.50) 4.12 (1.22) 5.68 (1.40) 5.08 (1.41) 5.77 (1.45)

Capital
(Log) 14.77 (2.36) 13.66 (2.05) 16.14 (1.82) 15.40 (2.16) 16.38 (2.06)

Capital per
1,000 Hours (Log) 9.99 (1.33) 9.54 (1.35) 10.46 (1.06) 10.32 (1.25) 10.61 (1.10)

This table shows the average values and standard deviations (in parentheses) of firm-year observations for
the variables listed.
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A.2 Kaplan-Meier estimation

The exact values for the KM estimation of cumulative derobotization rates can be found

in Table 7.

Table 7: Kaplan-Meier Estimates - Cumulative Derobotization Rate

Non-Censored Minimum Overall Maximum Period Midpoint of
Robotization Data Only Derobotization Derobotization Interval

1 29.2% (45.1%) 23.2% (53.8%) 31.4% (49.1%) 27.3 (51.0%)
2 23.3% (36.0%) 15.6% (36.2%) 20.4% (31.9%) 18.0 (33.6%)
3 7.0% (10.8%) 3.1% (7.2%) 7.4% (11.6%) 5.2 (9.7%)
4 5.3% (8.2%) 1.2% (2.8%) 4.8% (8.5%) 3.0 (5.6%)

The first term is the percentage of robotized firms estimated to derobotize in that period, while the term in
brackets is the percentage of firm who derobotize that are estimated to derobotize in that period.

Table 8 provides the exact KM estimates of the cumulative robotization rate, while Figure

9 plots the results graphically.

Table 8: Kaplan-Meier Estimates - Cumulative Robotization Rate

Non-Censored Minimum Overall Maximum Overall Midpoint of
Period Data Only Robotization Robotization Interval

1 14.6% (27.2%) 8.8% (45.0%) 12.3% (24.6%) 10.6 (30.3%)
2 14.2% (26.4%) 6.5% (32.9%) 12.8% (25.5%) 9.6 (27.6%)
3 10.7% (20.0%) 2.9% (14.6%) 9.2% (18.4%) 6.0 (17.4%)
4 11.1% (8.2%) 1.3% (2.8%) 9.4% (18.8%) 5.4 (15.4%)
5 3.1% (5.8%) 0.2% (0.9%) 6.3% (12.7%) 3.3 (9.3%)

The first term is the percentage of unrobotized firms estimated to robotize in that period, while the term in
brackets is the percentage of firm who robotize that are estimated to robotize in that period.

Figure 9: Kaplan-Meier estimates of robotization rates
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A.3 Robustness test: duration dependence

As pointed out in Section 3, we restricted our sample to the firms for which the start of

duration is known. However, this approach decreases the number of observations and thus

does not allow us to introduce a richer set of controls. As a robustness check, we extend

the sample to firms for which the start date of robotization may not be observed.

We assume that if a firm enters the survey being robotized, the date of entry and robotiza-

tion coincide. We estimate equation (1) and also add controls for industries.

The results of our estimation are shown in Table 9. Compared to our previous estimates,

the coefficient on firm size increases significantly in specification 1 to 3. Once a control

for industry is included, the coefficient on size decreases in magnitude but remains higher

than the baseline estimates. In particular, the probability that larger firms derobotize is

much smaller than in our estimates from Table 3. A possible explanation behind this may

be the longer lifetime of larger firms and the selection of smaller firms in our initial sam-

ple. At the same time, the coefficients on previous robotization remain indistinguishable

from zero in each specification.

Table 9: Robustness test: Inclusion of firms robotized at t0

(1) (2) (3) (4) (5) (6)

Size

From 100 to 500 -0.53∗∗∗ -0.53∗∗∗ -0.41∗∗∗ -0.35∗∗∗

(0.10) (0.10) (0.10) (0.10)

From 500 -0.92∗∗∗ -0.92∗∗∗ -0.81∗∗∗ -0.72∗∗∗

(0.15) (0.15) (0.16) (0.16)

prevrob -0.06 0.06 0.07 0.04 -0.03
(0.15) (0.15) (0.15) (0.15) (0.15)

log(K/L) -0.23∗∗∗ -0.30∗∗∗

(0.05) (0.05)

log(capital) -0.22∗∗∗

(0.02)

log(hours) -0.23∗∗∗

(0.04)

Industry FE yes yes yes

Observations 1792 1792 1769 1769 1769 1769

The sample includes duration of robot usage for firms that: (a) were robotized at least once during 1991-
2014; (b) did not abandon robots more than 2 times. Baseline category of size is “Less than 100 employees”.
Capital is in prices of 1991. Standard errors in parenthesis. * p < 0.1, ** p < 0.05, *** p < 0.01.
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A.4 Robustness test: disaggregated data and firm size

So far, we studied the effect of firm size on derobotization using the aggregate data on

duration and the firms’ characteristics over the robotization period. Since the firm’s size

may be subject to productivity shocks, there are several caveats to this approach: first,

the median size of firms may not align with the size of firms with longer periods before

derobotization. Second, firms facing a higher volatility of shocks are more likely to both

derobotize and change their size.

To overcome this problem, we restrict our sample to firms which robotize only once and

measure firm size by its lagged value instead. Then, we estimate a linear probability

model on pooled data, explicitly

derobotizationit = β1sizeit−1 +β2 log(K/L)it−1 +β
′
3× industryit + τt + εit . (14)

The result of our estimation is presented in Table 10. In each specification, the coefficient

of size on the probability of derobotization is negative and statistically significant at a

5 percent level. In comparison to smaller firms, the probability of derobotization for

medium- and big-sized firms is maller by roughly 8 and 16%, respectively. We conclude

that this finding is robust across different estimation strategies and samples.

Table 10: Robustness test: disaggregated data

(1) (2) (3) (4)
Sizet−1

From 100 to 500 -0.09∗∗∗ -0.08∗∗∗ -0.08∗∗∗ -0.06∗∗∗

(0.02) (0.02) (0.02) (0.02)

From 500 -0.17∗∗∗ -0.16∗∗∗ -0.16∗∗∗ -0.14∗∗∗

(0.02) (0.02) (0.02) (0.03)

log(K/L)t−1 -0.02∗ -0.02 -0.02∗∗

(0.01) (0.01) (0.01)

Time FE yes yes

Industry FE yes

Observations 1560 1538 1538 1529

The overall number of firms is 646. The sample includes firms that: (a) are observed at least for 3 periods;
(b) were not robotized in 1991; (c) adopted robot over 1991-2014; (d) did not switch back and forth.
Baseline category of size is “less than 100 employees”. Standard errors are clustered on firm level.
* p < 0.1, ** p < 0.05, *** p < 0.01.
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A.5 Additional figures and tables

Table 11: Summary statistics

Variable Mean Std. Dev. Min. Max. N
size 1.85 0.72 1 3 2211
log(K/L) 10.62 1.05 4.16 13.87 2185
log(hours) 5.64 1.46 1.39 10.18 2188
log(capital) 16.28 1.97 8.39 21.92 2208
derobotization 0.22 0.41 0 1 2503
industry 11.36 5.24 1 20 2211

The sample provides information about variables used in Section 3 and includes firms that: (a) are observed
at least for 3 periods; (b) were not robotized in 1991; (c) adopted robot over 1991-2014; (d) did not switch
back and forth.

Figure 10: Baseline Hazard: Cox proportional hazards regression
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The figure shows the smoothed estimate of the baseline hazard function from specification 3 of the Cox
proportional hazard regression.
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B Micro-foundations of production function

Following the task-based production function from Acemoglu and Restrepo (2018a), we

derive the production function used in Section 4 as in Humlum (2019).

Consider a firm operating with a task-based production function:

Y :=
(∫ 1

0
y(i)

σ−1
σ di

) σ

σ−1

, (15)

where y(i) denotes the production of a task i ∈ [0,1]. To complete the task i, a firm can

employ a factor Xo from occupation o ∈ O⊂ N, with productivity zo(i,R) which depends

on the robotization state R ∈ {0,1}.17 The production function of completing task i with

factor Xo is given by

y(i) := zo(i,R)Xo(i). (16)

With a slight abuse of notation, we will suppress the robotization argument of task pro-

ductivity so that zo(i,R) ≡ zo(i). Conditional on the robotization state, the optimal task-

assignment problem is given by

max
{Xo(i)}

|O|
o=1

(∫ 1

0
y(i)

σ−1
σ di

) σ

σ−1

−
|O|

∑
o=1

(∫ 1

0
poXo(i)di

)
, (17)

where po is the price of factors from occupation o. In other words, the firm chooses: (1)

the assignment of tasks A = {Ao}o∈O and (2) the amount of factors Xo used for production

of each task. Once the assignment of tasks is chosen, the first-order condition for a factor

Xo and a task i ∈ Ao is

zo(i)σ−1Y = Xo(i)pσ
o . (18)

Combining first-order conditions for tasks i,k∈Ao and integrating by k over Ao, we obtain

that ∫
Ao

zo(k)σ−1dk
zo(i)σ−1 =

∫
Ao

Xo(k)dk
Xo(i)

. (19)

Finally, the first-order condition simplifies to

Xo(i) = Xo
zo(i)σ−1∫

Ao
zo(k)σ−1dk

, (20)

where Xo ≡
∫

Ao
Xo(k)dk is the total amount of factors from occupation o used in produc-

tion. Plugging in equation (20) into the definition of the task-based production function,

17By assumption, the set of occupations O is finite.
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we get:

Y ≡
{∫ 1

0 y(i)
σ−1

σ di
} σ

σ−1

=

{
∑

O
o=1

(
zoXo

)σ−1
σ
} σ

σ−1

(21)

zo :=
(∫

Ao
zo(i)σ di

)(∫
Ao

zo(i)σ−1di
)−1

(22)

The decision to robotize changes the production function along two dimensions. First, it

changes the productivity by an absolute magnitude, leading to direct gains in efficiency.

Second, and more importantly, it changes the relative productivity of different occupa-

tions, which leads to assignments of different tasks across occupations. For our simula-

tions, we rewrite the aggregate robotization-dependent productivity as Humlum does in

his paper:

zo = exp(ϕo +Rγo) (23)

ϕo = log

∫
Ao

zo(i,0)σ di∫
Ao

zo(i,0)σ−1di
(24)

γo = log

∫
Ao

zo(i,1)σ di∫
Ao

zo(i,1)σ−1di
− log

∫
Ao

zo(i,0)σ di∫
Ao

zo(i,0)σ−1di
(25)
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C Simulation

C.1 Parametrization and methodology

Table 13 shows the parametrization used for the different models simulated.

Table 13: Parametrization

Parameter Full Model Permanent Adoption Certain Costs
β 0.8 0.8 0.8
σ 1.5 1.5 1.5
γH 1.74 1.74 1.74
γ1 -0.1 -0.1 -0.1
γ2 0.2 0.2 0.2
wM 15 15 15
w1 10 10 10
w2 20 20 20
CR 500 500 500
pR 1260 1010 1160
δP 0.03 1×1020 0.03
δS 0.17 0.17 0.17
ε 1.5 1.5 1.5
YM 10 10 10
PM 10 10 10
ϕH [0,0.7,1.3,1.8,2] [0,0.7,1.3,1.8,2] [0,0.7,1.3,1.8,2]
ϕ1 [0,0.25,0.5,0.75,1] [0,0.25,0.5,0.75,1] [0,0.25,0.5,0.75,1]
ϕ2 [1,1.25,1.5,1.75,2] [1,1.25,1.5,1.75,2] [1,1.25,1.5,1.75,2]
εR [-220,-110,0,110,220] [-220,-110,0,110,220] [0,0,0,0,0]
ρH 2/3 2/3 2/3
ρ1 0.3 0.3 0.3
ρ2 0.5 0.5 0.5

C.1.1 Value function iterations

Our simulations are programmed using MATLAB. The value function iteration relies

mostly on the usage of multidimensional arrays, with the dimensions corresponding to

the different vectors of states. In a first step, optimal profits and inputs are calculated

by exploiting the properties of the CES production function, allowing for independent

optimization of each input.

In order to account for the different properties of first-time and repeated-time robotiza-

tion, the arrays are then extend before specifying initial guesses and iterating the value

functions. Due to the different conditional expectations in different robotization states,
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the expectations are computed separately for a known and unknown εR.18 As soon as

some specified precision is reached, policy and value functions are reported.

C.1.2 Time series simulation and event studies.

We start by specifying the initial state profile according to the unconditional distribution

of the discretized AR processes, and proceed to generate a time series of state profiles

for each firm by randomly generating new exogenous states each period according to the

transition probabilities.

Using the policy function arrays from the value function iteration, we obtain a time series

of robotization behavior and input demands. On this simulated dataset, we then perform

the calculation of summary statistics and generate event studies. The latter is done by

identifying each robotization and derobotization event, excluding those which are either

too early or late and so do not contain enough data regarding the pre- and post- behav-

ior, normalizing the event period to zero, and plotting the averages of the corresponding

samples.

C.2 Counterfactual comparisons

As described in Section 5, derobotization is jointly driven by the productivity effect and

the revelation effect. The latter in particular is what enables the model to realistically

capture the behavior observed in the data. To illustrate this, Figure 11 shows the differ-

Figure 11: Summary statistics for the full model and the certain costs model

ences when allowing for an initial uncertainty in robotization costs. While being able

18All expectations are calculated using matrix multiplication adapted to higher-dimensional arrays.
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to account for the overall phenomenon of derobotization fairly well (as apparent in the

left histogram), the shortcomings become apparent when considering the behavior among

derobotizers. Having only decreasing productivity as a catalyst for deautomation, it relies

heavily on its persistence. However, as derobotization occurs at the opposite part of the

state space than adoption, it is highly unlikely that a full fast decrease of productivity

(from above to below average) takes place in the first period. Thus the modeling of a

predominance of first-period reversion requires some form of uncertainty in the success

of automation, captured by the production costs using robots.

On another note, we also consider the effect of setting δS = 0. While the timing of derobo-

tization remains mostly unchanged (see Figure 12), setup costs are necessary to generate

firms which switch back and forth, as in the data. As stated in Section 4, the difference in

price between pR and (1−δS)pR is the main incentive of rerobotization.

Figure 12: Summary statistics for the full model and the model without setup costs.

33



C.3 Policy function heatmaps

Figure 13: Heatmaps for the policy function M,L1 and L2
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Figure 14: Heatmaps for the policy function L2/L1 and M/(L1 +L2)
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