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Abstract

This paper aims to investigate stealth trading in modern US equity markets. Stealth trading
by informed participants has been documented as the primary mechanism by which private
information is incorporated into market prices, thus driving price discovery. This paper
extends the stealth trading literature by analyzing several different trade characteristics with
a particular focus on the role of high frequency traders. First, we analyze how trade size
relates to price formation, building on several previous important works with a specific focus
on odd-lot trading. Next, we look at how different types of market participants impact price
formation, specifically utilizing our dataset to examine more closely the role of high frequency
traders in the price discovery process. We further extend this model to analyze briefly the
role of trade size and trader type contingent on market capitalization. As a last analysis, we
use high frequency return windows of less than 1 minute to analyze how cumulative price
changes coming from odd-lot trades vary with the type of market participant. Overall, our
results confirm previous analysis which indicates that small trades play an outsized role in
the price discovery process at the daily level, and our results hint that high frquency traders
engage in stealth trading and play a significant role in the price discovery process. The
results revealed in our high frequency analysis indicate that the role of HFTs in driving price
movements over very short time horizons are more subtle.

Background, literature review and objectives

Introduction

A key focus in market microstructure is to understand the determinants of price formation
in financial markets. One influential postulate on why different types of trades may have dif-
ferent price contributions than what their share in the overall trading process would suggest
is the Stealth Trading Hypothesis coined by Barclay and Warner in their 1993 article Stealth
trading and volatility: which trades move prices?. This theory posits that heterogenous cu-
mulative price impact from trades of different characteristics, such as size, can be traced
back to how much information each of these groups of trades inputs into the market over a
certain time window. In turn, the choice of certain types of trades might respond to strategic
behavior on the part of traders with superior information1 regarding the true value of the
asset. Therefore, to the extent that features of trades associated to traders in possession of

1Note that this does not necessarily mean that the agent is engaging in insider trading. For instance, some traders may have
better proprietary forecasts than others.
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profitable private signals can be isolated, it is to be expected that such transactions drive
a relatively larger share of cumulative price impact. Barclay and Warner also put forward
a couple of competing hypotheses asserting that, if all trades conveyed the same amount of
information regardless of their characteristics, the relative contribution to price formation of
each category should mirror its share in some measure of aggregate trade over the period.
Specifically, these two conjectures, known as the Public Information and Trading Volume
hypotheses, predict that price contribution from trades with specific traits should mimic,
respectively, their share in the overall number of transactions or total volume of trade in the
stock over the interval considered.
Against this backdrop, using a dataset that has formed the basis of prior literature on
price formation over the past few years, our thesis focuses on measuring the relative price
contribution from trades of varying sizes in which high-frequency traders (HFTs) take either
or both sides of the transaction.

Literature Review

The literature on stealth trading dates back to Barclay & Warner (1993), who first designed
and tested the manner in which trade size impacts the cumulative price movement of a stock
during a certain time interval. Building upon the work done by Kyle (1985), which con-
cluded that informed traders with private information act strategically, the authors devised
the weighted price contribution (WPC) procedure to test the cumulative price impact of
trades coming from different trade size categories over a certain time interval. By applying
the WPC methodology to a dataset of corporate acquisitions in the early 1980’s, they find
that over 92% of the cumulative price change in the days leading to the announcement of
the merger came from medium sized trades. They also find that over 82% of daily cumula-
tive price change in NYSE listed stocks came from transactions in this size category during
the 1981 to 1984 period. Together, these results provided evidence that informed traders
attempt to camouflage their trading activity by splitting large trades into several pieces (a
strategy frequently called slicing and dicing) over one or several trading sessions. Barclay
and Warner hypothesize that their result is due to the fact that traders in the large trades
category are typically uninformed liquidity takers or suppliers that reveal their intentions
(thus decreasing the price concession required by market makers due to smaller adverse se-
lection costs), whereas anonymous large block orders would result in large price concessions
and information spillovers. In addition, small traders were generally believed to be retail
traders and therefore classified as uninformed. Using this logic, Barclay and Warner postu-
late that medium sized trades are the typical size category used by informed traders. The
results obtained by the authors were then underpinned by Chakravarty (2001), who using
the same methodology extended the understanding of the importance of the impact of in-
formed traders using medium sized trades by explicitly analyzing the type of trader as well
as the trade size. Chakravarty’s dataset of NYSE stocks from November 1990 to January
1991 includes the full audit trail of the data, which identifies participants as institutions
or individuals. Over the full sample without discriminating by trader type, Chakravarty
found that medium sized orders contributed just over 79% of the cumulative price change
of a stock, corroborating the results from Barclay and Warner. Moreover, when subsetting
the data by trader type, the author found that 102% of the cumulative price change in the
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medium sized trade category came from trades initiated by institutions, whereas -2% of the
price change came from medium sized trades initiated by individuals. Overall, these results
supported the initial results of Barclay and Warner, and provided additional understanding
of the investor responsible for the cumulative price changes of stocks. Under the assump-
tion that institutional investors have a higher tendency to acquire profitable private signals,
Chakravarty demonstrated that institutions were the primary drivers of share price changes,
and that they typically acquired stakes using medium sized trades in order to prevent leaking
private information into the market.
However, since the time of Chakravarty’s study, numerous developments in equity markets
have decreased the costs of breaking up orders into smaller trades. Notably, since the early
1990s there has been a large decline in fees and increasing electronification of markets, both
of which serve to decrease the costs of splitting orders. Thus, as the costs of executing smaller
orders decreases, one would expect that the stealth trading tactics of informed traders would
increasingly gravitate toward smaller trade sizes as they intend to minimize the dissemination
of private signals while profiting from them. Market microstructure developments indeed
point in this direction, with several more recent studies pointing to a dramatic decline in the
size of trades which lead contribution to price discovery in stock markets. Notably, these
events have coincided with a marked rise in the participation of HFTs over the last two
decades.
O’Hara, Yao & Ye (2014) use a unique dataset to meaningfully update the stealth trading
literature for the modern market environment through their analysis of odd-lots (i.e. trades
sized 100 shares or less) and their focus on continuous trading daily intervals. First, a history
of odd-lot trading on the NYSE is provided, showing that these trades were generally a
declining share of total volume in the period from 1950 to 2000, amounting to less than 2%
of total volume by 2000. From there, the authors use more recent data from the period
between 2008 and 2012 to show steady increases in both the number of trades and the
volume coming from odd-lots. As measured at the end of 2011, odd-lots had increased to 6%
of the total volume, the largest share seen in US equities since the early 1970’s. They also
demonstrate that trades initiated by HFTs have a higher probability of being odd-lots than
trades initiated by non-HFT market participants. Next, O’Hara, Yao and Ye follow Barclay
and Warner’s weighted price contribution approach to analyze the price impact of different
trade sizes in a dataset which spans 120 representative stocks during the period from 2008
and 20092, showing that odd-lot trades contribute a larger share to price formation than
what their participation in overall activity would suggest. In all, these results point to price
discovery shifting toward small trades over the past twenty years, which the authors argue
is tightly linked to increased participation from algorithmic traders.
Brogaard, Hendershott & Riordan (2014) more fully analyze the buying and selling activity
of HFT firms. Using a state-space model to decompose price movements of stocks into in-
traday permanent and temporary components, the authors analyze if HFT trading activity
is predictive of future price movements. The authors provide evidence that HFTs tend to
trade in the direction of permanent price movements, while trading in the opposite direction
of transitory noise. They also show that HFT trading activity predicts price movements at
a horizon of 3 to 4 seconds. Their results suggest that HFT firms acquire private informa-
tion through the trading process itself, and then exploit these signals over very short time

2We use this dataset in our empirical analysis and discuss it in further detail in latter sections of the work.
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windows.

Objectives

Our project aims to build on the results of the surveyed literature in several respects. First,
although there is evidence that HFTs channel a relatively large share of their trading activity
through odd-lots (O’Hara, Yao & Ye, 2014), we test how this claim interacts with the relative
information content from odd-lots at the daily level using an extension to the conventional
WPC procedure. Furthermore, theoretical models suggest that informed traders would only
sacrifice price certainty for execution certainty if the value of their private signal were suf-
ficiently close to expiry, usually characterized as intervals shorter than a minute (Kaniel &
Liu, 2006). The WPC methodology and our data are well-suited to study a first refinement
of this proposition, specifically, if limit orders drive a larger share of price discovery over the
trading session according to their size and the type of traders at either side of the transaction.
Nevertheless, the WPC approach is not appropiate for assessing these dynamics at higher
frequencies. For reasons that will be touched upon in latter sections, frictions related to the
trading process which tend to fade for data aggregated at the daily level may be present
transitorily and lead to confounding effects in the relevant econometric tests. Therefore, to
study how trade price contribution varies by size and type of traders involved at shorter-
than-a-minute intervals, we use a fixed effects specification that seeks to capture the relative
price contribution of odd-lot trades at higher frequencies. We then use this model to analyze
how the relative information content of odd-lots varies when the type of parties involved in
the transaction are accounted for. In all, our results should contribute to the understanding
of how the information content of trades differs according to their size and the type of parties
involved over varying time horizons in the session. Along the way, we take a brief detour
from the key focus of our work to shed some light on the debate of whether a systematic
relationship exists between odd-lot trades, frequently linked to informed investors, and the
market capitalization category of the stock being traded (Roseman, Van Ness & Van Ness,
2018).

Data and empirical strategy

The price contribution literature has focused on building an understanding around which
trade sizes convey a disproportionate amount of information and potential explanations
for this phenomenom. Throughout this section, the WPC methodology is developed and
applied to our data. Next, extensions that allow us to explore how the information content
varies depending on both order sizes and type of traders involved, as well as whether any
systematic relationship between odd-lot trades and market capitalization appears plausible
are estimated. Before reaching that stage, however, a description of the dataset at hand is
warranted.
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The NASDAQ HFT dataset

The dataset used in this project is usually referred to as the “NASDAQ HFT” database in
a number of research articles in the price contribution literature (Hasbrouck & Saar, 2013).
The file is built around a random sample of 120 stocks listed on the NYSE and NASDAQ
exchanges, and contains transaction-by-transaction data timestamped to the millisecond for
all trading dates in 2008 and 2009. Specifically, the sample comprises information on the
following eight variables:

• ID: A unique identifier for each of the 120 stocks.

• Date

• Time: Time at which the trade occurred, in milliseconds from midnight.

• Shares: Size of the trade in number of shares.

• Price: Price at which the transaction was executed.

• Direction: Indicates if trade was a purchase (1) or a sale (-1).

• Type: A key feature of the NASDAQ HFT dataset, identifies each transaction by parties
involved; HH and NN for a trade between two HFTs or two non-HFTs, respectively,
HN for transactions between HFT liquidity takers and non-HFT providers, and NH to
denote non-HFT takers trading with HFT makers. The labelling is performed on the
basis of NASDAQ’s proprietary knowledge on the identity of its customers.

• Capgroup: The sample is grouped into three market capitalization size categories ac-
cording to 2009 year-end data; large, medium and small, each containing 20 stocks from
NASDAQ and 20 from NYSE. The top size batch is built from the largest 40 market
capitalizations in the sample, while the mid and small categories include 40 stocks each
with sizes around the 1000th and 2000th largest firm values, respectively, in the Russell
3000 index.

Since the focus of our work is on price discovery, we remove observations outside the contin-
uous trading hours between 9:30 and 16:003.
Given the granularity of the dataset at hand, traditional summary statistics provide very
limited information on its characteristics. Therefore, following Brogaard, Hendershott &
Riordan (2014), we calculate equally-weighted daily averages of volume traded by type of
parties involved and market capitalization of the underlying stock which may be more in-
formative of features relevant to the models we will estimate in later sections. Results from
this procedure are reported in Table 1.

Weighted Price contribution

The WPC literature proposes assessing the relative contribution of trades of certain sizes
to price discovery in a given timeframe4 by focusing on how the ratio of cumulative price

3As suggested in Brogaard, Hendershott & Riordan (2014).
4The methodology is usually applied to daily or multiday intervals.
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change within that subgroup to overall price change in all stocks in the sample compares to
the proportion of transactions or volume attributable to that size category over the period.
Consider N trades for stock s in period t, each of which falls in one of J size categories.
Then, the price contribution of trades belonging to category j for stock s in window t is
given by

PCs,t
j =

∑N
n=1 δn,jr

s,t
n∑N

n=1 r
s,t
n

(1)

where δn,j is a binary variable that equals 1 if trade n in stock s falls within size group j
and 0 otherwise. In turn, rs,t

n is the difference in price between trade n and its immediately
preceding transaction for stock s in period t. We remove observations with daily cumulative
changes larger than 300% in absolute value to avoid pushing PCs,t

j towards zero due to
outliers5. Furthermore, to mitigate heteroskedasticity from firms with small daily cumulative
price changes, the methodology suggests weighting each stock’s price contribution derived
from (1) using the factor

ws,t = | ∑N
n=1 r

s,t
n |∑S

s=1 | ∑N
n=1 r

s,t
n |

(2)

Then, the weighted price contribution of trades in size bin j in timeframe t is given by

WPCt
j =

S∑
s=1

ws,tPCs,t
j (3)

Finally, assuming the sample is composed of T subperiods of length t, the aggregate weighted
price contribution of trades in category j over the full sample is defined as

WPCj =
T∑

t=1

WPCt
j

T
(4)

Table 2 reports the results from applying the procedure displayed in (3) defining J as six
order size categories at daily frequency t and taking averages across dates. Our results
from this exercise are consistent with prior literature, pointing to trades sized 100 shares or
smaller carrying a disproportionate load of information, while the opposite holds for larger
transactions. While displaying WPC results against their share of transactions or volume
within a given period may hint on the direction of which trade sizes have relatively larger price
impact, there is a series of tests conventionally applied in the price contribution literature
which we need to carry out before making statistical statements on the matter. We thus
turn to addressing this point by detailing a testing procedure for the WPC methodology
and extending the analysis relative to what has been done in previous research in the next
section.

Econometric tests on price contribution

As has been established in prior sections, the Stealth Trading Hypothesis provides a logi-
cal framework to understand why some trade sizes may be more informative than others.

5We follow Barclay & Warner (1993) in this respect. Observations removed constitute less than 4.5% of the sample.
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However, this construct stands against a couple of competing theoretical backdrops, both
implying that trade characteristics (and in particular, transaction sizes) themselves should be
irrelevant for price discovery. As such, the Public Information and Trading Volume hypothe-
ses both posit the testable prediction that the price contribution of order size categories to
the overall change of a stock price in a given period should be identical to their share of total
trade, where the relevant proportion is calculated with respect to number of transactions in
the former conjecture and volume traded in the latter.
The empirical significance of different trade sizes’ price contribution can be thus assessed
through the following linear specification

PCs,t
j = d<100 δ

s,t
j<100 + d≥100 δ

s,t
j≥100 + β props,t

j + εs,t
j ... (A)

Where d is the coefficient on δ, a dummy variable that equals 1 for price contribution from
trades within a certain size category and 0 otherwise, β is the coefficient on the proportion
of total transactions/volume that a given size j has relative to overall transaction/volume
for stock s during period t, and the dependent variable represents the price contribution
of category j for stock s on date t as expressed in (1). The way the trade size binary
variables are defined in (A) makes for a very intuitive interpretation from the estimation. β,
which is estimated from the full trade/volume proportion series tells us how much of daily
cumulative price change is explained by the relative share of trades in size bin j to overall
trade or volume. In turn, the model intercept, which is split into two by the trade size
dummy, tells us whether and in which direction transaction size contributes to cumulative
price in the period. Under the null matching either the Public Information or Trading Volume
hypotheses, no price contribution difference should arise from trade size category considered
and the overall price change should be fully accounted for by the aggregate share in trade
of both size categories, that is, H0 : δ<100 = δ≥100 = 0 and β = 1. Therefore, the joint
test on the null hypothesis provides a basis for statistical statements on whether trade size
is relevant or not for cumulative price changes over the daily session, while the individual
coefficient estimates on the binary variables tell us specifically if trade size j contributes
disproportionately more (if positive) or less (if negative) than what its share in trade would
suggest.
The range of size categories presented in Table 2 was reduced to trades smaller than 100
shares and trades greater than or equal to this magnitude. Conveniently, replicating a
specification that has been applied before in the existing literature allows for a “sanity
check” on the pre-processing done on the data. In particular, if our first set of results
resemble reasonably well those of O’Hara, Yao & Ye (2014), the most recent article applying
the WPC methodology to assess price contribution based on this dataset, we can be confident
that extensions to the model are being built from a common empirical grounding.
Table 3 displays the results of estimating equation (A) from the NASDAQ HFT database us-
ing a Weighted Least Squares procedure with regression weights equal to the series obtained
from (2)6. The first column shows results for the regression with proportion calculated
by number of transactions and the right panel shows the case where this share is com-
puted by volume. As can be concluded from the F-statistic under both specifications, the
joint hypothesis that trade sizes are irrelevant for explaining cumulative price changes and

6The literature suggests proceeding in this fashion to account for heteroskedasticity, which might be particularly problematic
for stocks with small cumulative price changes
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that, in turn, these can be exactly traced back to the relative proportion of trades in that
group can be rejected at under the 5% significance level. The estimate on the proportion of
trades/volume already hinted in this direction, being individually different from 1 at under
5% significance. Notably, the coefficient on the odd-lot binary regressor is significant and
positive in both specifications, providing statistical evidence to the claim that these trades
contribute disproportionately to cumulative price changes at the daily level. Both of these
results are consistent with the Stealth Trading Hypothesis. In contrast, the price contribu-
tion from trades sized 100 shares or larger is on average smaller than their daily proportion
of transactions/volume, although this is only significant at the 5% level in the volume share
specification. Our results resemble those in O’hara, Yao & Ye (2014) in magnitude, sign and
significance 7.
We perform a first refinement to the conventinal WPC approach that seeks to compute
relative price informativeness by discriminating trades not only by their size (i.e. odd-lots vs
non odd-lots) but also by the type of initiating trader. If we take a step back and look into the
way the relative price contribution in model (A) was calculated in equation (1), it appears
that j need not only accomodate for trade size categories, but potentially could account
for more detailed characteristics to allow us to group the price contribution from a more
refined set of trades and then test whether the stealth trading hypothesis holds. With this
in mind, we ran the procedure used to calculate price contribution as in (1) and weights as
in (2) by defining the price contribution from four distinct groups of trades: high-frequency
initiated/odd-lot, non high-frequency initiated/odd-lot, high-frequency initiated/non odd-
lot, and non high-frequency initiated/non odd-lot. The model we need to regress to test
whether each of these categories contributes disprportionately to price discovery over the
daily session is thus given by

PCs,t
j =

2∑
h=1

2∑
i=1

dh,iδh,i + β props,t
j + εs,t

j ... (B)

Where the subscript h on the δ dummy variable represents the trade size considered (odd-
lot/non odd-lot) and i characterizes the type of initiating trader (HFT/non HFT). Table 4,
which maintains the overall structure of Table 3, presents our results from estimating model
(B). Of note, the null hypothesis consistent with the trading volume or public information
hypothesis is now given by H0 : δ<100,HF = δ<100,nHF = δ≥100,HF = δ≥100,nHF = 0 and β = 1.
In addition to an F-test onH0, we now include joint tests for δ<100,HF +δ<100,nHF = δ≥100,HF +
δ≥100,nHF and δ<100,HF + δ≥100,HF = δ<100,nHF + δ≥100,nHF to assess whether significant price
contributions differences arise between odd and non odd-lot sized trades once the type of
initiating party has been considered, and between HFT and non HFT initiated transactions
once trade sizes have been accounted for.
We see in these results that accounting for the initiating trader provides us with a richer
interpretation of the price discovery process. As in part (A), we see that the F-test for
trade size is significant both when viewing the data by number of transactions as well as by
volume. In addition, we reject the null hypothesis that the coefficients of all category groups
are equal to zero, thus rejecting the public information and trading volume hypotheses.

7Small differences may arise, for instance, if the non-continuous trading hours or outsized returns excluded from the analysis
in that piece differed slightly from our own.
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When zooming in to look at individual coefficients, we find a more nuanced picture. Using
the transaction specification, we see that every category other than odd-lot/HFT-initiated
trades have negative coefficients, indicating that these categories contribute less to price
discovery than their proportion of the number of transactions. However, our coefficient
for odd-lot/HFT-initiated trades is not significant. When looking at the data by share of
total volume, all four of the coefficients are statistically significant, and the results are in
line with our expectations in that odd-lot trades initiated by HFT traders contribute 13
percent more than their share of the volume to price discovery, the most of any of our four
groups. This seems to provide support for the idea that HFTs engage in stealth trading.
However, we do note that in both specifications we are unable to reject the null hypothesis
that the coefficients on HFT initiated trades are statistically different from those of non-
HFT initiated trades. This is likely due to the fact that as shown in part (A), odd-lot trades
have a very strong impact on price discovery, and those results continue to hold here as
even non-HFT initated odd-lot trades contribute more than their share to price discovery.
Given that the usage of odd-lots is also likely by informed traders who are not HFTs (for
example, institutions who have the ability to trade algorithmically), we do not see this as
a significant challenge to the thesis that HFTs engage in stealth trading, but instead find
it more plausible that other informed institutional investors make up a signficant portion
of the non-HFT initated odd-lot trades. Thus, an avenue for future research could include
using data with the ability to separate trader type further into HFT, non-HFT institutions,
and non-institutional clients in order to better identify informed traders.
We then study results drawn from equation (B) differ when we restrict our sample by market
capitalization category. Although thoroughly touching upon the mechanisms that may lie
behind distinct price contribution from trades in stocks with different market capitalization
is beyond the scope of our work, we can get an idea as to whether average differences in
the relative price contribution from different trade size - initiating trader combinations may
arise when the market capitalization of the traded stock is considered. Results from this
exercise are reported in Tables 5, 6 and 7.
In general, our results when running the regressions segmented by market cap are similar
to our findings in part (B). In all specifications, we reject the null hypothesis that our
dummy variable coefficients are equal to zero, and we also reject the null hypthesis that
the coefficients for odd-lot trades are not statistically different from non-odd lot trades. In
addition, just as in part (B), we see that our coefficients for the specification using share of
volume are all statistically significant, whereas the specification using share of transactions
can at times display coefficients that are not significant depending on the model specification.
More interesting, however, we see a general trend as market cap decreases, the contribution
to price discovery coming from odd-lot trades shows an increasing trend that is especially
evident in our model specification using the share of volume. We postulate that stealth
trading may be more visible in small-cap stocks because their lower liquidity creates larger
potential price impact from inventory risk considerations in these stocks, leading informed
investors in both the HFT and non-HFT category to use odd-lot trades more frequently.
Lastly, we also note that small caps are the only category where non-HFTs contribute a
larger share of price discovery than HFTs in the odd-lot category, which seems to indicate
that HFTs trade less actively in than non-HFT informed investors due to liquidity concerns
and adverse selection risk in these categories.
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Now we turn to studying whether price contribution from different trade sizes varies depend-
ing on the type of traders involved in the transaction at intervals lasting only a few seconds.
Importantly, however, the WPC approach is not properly suited for this purpose with the
dataset at hand, which contains transaction-by-transaction prices. Intuitively, the probabil-
ity that at any shorter-than-a-minute interval the best bid or ask price of the limit order
book is wiped out thus shifting the mid-quote from its previous level is naturally smaller
than the probability that the price moves higher or lower due to aggregate trading dynamics
over a full trading session, particularly when focusing in odd-lot trades. The consequence
is that transaction price data in very short intervals often exhibit a bounce between the
best prices at either side of the book as buyers and sellers trade without shifting the overall
spread up or down (Lerner, 2010). This dynamic would therefore introduce excessive noise
into model (A), decreasing its statistical power and potentially leading to confounding ef-
fects if applied to our data. In fact, some extensions to the WPC methodology have focused
on developing alternatives that allow for identification of relative price contribution under
procedures that are robust to these features. For instance, using a dataset from the Spanish
stock exchange that includes high-frequency quote level data in addition to transaction data,
Abad and Pascual (2014) find that using the midpoint between the best bid and best offer in
place of using transaction prices results in a large upward adjustment to the contribution of
odd-lot trades to price discovery. Against this backdrop, they propose modifying the WPC
when using high-frequency data in such a way that a frictionless estimate that strips out
the bounce effect is obtained by using the midpoint price. Unfortunately, given that our
dataset contains only transaction data and not quote level data, we are unable to validate
the approach in the context of our project. Thus, we pursue a different approach when using
high frequency data detailed below.
To assess differences in price contribution from different trade size-trader type combinations
at higher frequencies we first compute forward looking log-returns for 1, 5, 10, and 30 second
windows by stock from our dataset, multiplying each of these returns by the direction of
the trade they followed (as stated in prior sections, 1 for purchase and -1 for sale orders).
This implies that, if prices move in the direction of the accumulated trade in the window
considered (i.e. prices increase after buy and decrease after sale the lagged order) the re-
sulting computation will be positive, otherwise, unless cumulative return over the interval
equals exaclty zero, it will be negative. In other words, positive returns mean transactions
contribute to price discovery over the interval. We then compute the average log return
for each of the windows considered at the stock-date level, which will form the basis of the
econometric tests discussed in latter paragraphs.
To perform formal tests on if and how price contribution varies between trade sizes at high
frequencies, our specification of interest is given by the following Fixed Effects model

rst = k + d1δ<100,HF T + d2δ≥100,HF T + d3δ≥100,nHF T +
120∑
s=1

αsSs +
52∑

w=1
λwWw + υit ... (C)

where rst is the daily average 1-, 5-, 10-, or 30-second forward looking log return for stock s
on date t, S120

s=1 and W 52
w=1 are binary variables to allow for stock and week fixed effects and

dh for h in {1, 2, 3} are the coefficients on dummy variables which identify average returns
over the interval for odd-lot trades initiated by HFTs, non odd-lot trades initiated by HFTs
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and non odd-lot trades initiated by non HFTs. Note that although model (C) resembles
the structure of the specification used for daily tests, to avoid multicollinearity issues we
omit the explicit inclusion of the odd-lot initiated by non HFT category, which is in turn
represented by intercept k, thus our coefficients will be interpreted relative to that baseline.
Table 8 reports our results from running model (C). As can be seen, none of our coefficients
our statistically significant for the data when grouped as a whole. We provide a potential
explanation in the next paragraph.
To mirror the procedure followed at the daily level, we run equation (C) restricting our
sample by market capitalization category. Results from these estimations are reported in
Tables 9, 10 and 11. Interestingly, we do achieve statistically significant results for both
the large and mid-cap specifications at high frquencies. We also note that HFT initiated
odd-lot trades play a relatively larger role in high frequency price discovery for large cap
stocks than for mid-cap and small-caps, as indicated by the larger relative coefficients for
the HFT initiated odd-lot trades in the large-cap specification. This is consistent with our
understanding that HFTs preferentially trade in highly liquid securities, and thus they play
a more dominant role in the price discovery process for large-cap stocks. For the small-cap
specification, levels of significance of the coefficients vary across the different groups and time
horizon. We suspect that these results may be impacted by the lack of continous trading
at the small cap level. We also note that for small-cap stocks, the sign of the coefficient
for HFT initiated odd-lot trades changes sign and is statistically significant. We believe this
potentially points to HFTs being subject to higher adverse selection costs from informed non-
HFTs using limit orders to accumulate positions in small-cap stocks. In turn, this change
of sign potentially confounds our results when aggregated across market caps, leading to a
lack of significance. We conclude that the price discovery process for small-cap stocks is
fundamentally different than for larger market capitalizations, as it does not appear to rely
on HFTs and is likely driven by informed investors who acquire fundamental information
and operate with longer trading horizons.

Conclusions

Replicating the approach pioneered by Barclay and Warner, we first used the WPC ap-
proach to investigate if that small trades, and in particular odd-lots, contribute an outsized
proportion to the process of price discovery in US equity markets. As shown in Table 2,
using our 6 discrete trade size buckets, we calculate that odd-lots contribute to 37% of the
total price discovery in our sample, which amounts to over 4x more than their share of the
overall volume. In addition, round lots of exactly 100 shares contribute another 47.9% to
price discovery, pointing to the vast majority of price discovery comes from trades less than
or equal to 100 shares. Next, we collapse our trade size buckets into two groups denoted as
less than 100 shares or greater than or equal to 100 shares, and we use dummy variables to
analyze the statistical significance of our results price contribution differences. Using a joint
test under the null hypothesis that the coefficients on our trade size dummies are equal to
zero, we are able to reject the null hypothesis and determine that whether or not a trade
is an odd-lot or not is a statistically significant determinant of price contribution. Finally,
we briefly analyze the contribution of odd-lot trades segmented by market capitalization but
find no additional significant information.
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Next, we analyze whether trader type adds any significant information to our trade size
model by discriminating by both trade size and whether the initiating trader is HFT or non-
HFT. We find that, in line with our priors, our share of volume specifications show evidence
of HFTs engaging in stealth trading, as HFTs initiating odd-lot trades contribute more to
price discovery than their share of volume would suggest. We also do not that non-HFTs
using odd-lot trades also contribute more to price discovery than their share of volume would
suggest, which we believe is likely to be driven by non-HFT investors who are informed also
gravitating toward small trades. Moreover, by running this same analysis conditional on
market capitalization, we show that these results are consistent across all market caps, with
the impact of odd-lots becoming stronger and the impact of HFT becoming slightly weaker as
cap size decreases. Overall, our results lend credence to the hypthothesis that HFTs engage
in stealth trading, and that their activity drives a greater proportion of price discovery than
their share of volume alone would suggest.
Finally, due to challenges in uncovering HFT impact on price discovery with high frequency
data, we shift to using a fixed effects model to analyze the role of trader type in post-trade
price movements using short horizon windows of one second, five seconds, 10 seconds, and
30 seconds. We again segment the data by our binary specification of odd-lot vs larger than
odd-lot, and use our four possible trader type interactions. Our results indicate profoundly
different dynamics for short horizon price discovery dependent on market capitalization.
While we find a statistically significant evidence of HFT impact on price discovery over
short horizons in large and mid-cap stocks, our results for small-cap stocks diverge from the
other categories and confound the signficance of our results when the data is aggregated.
Overall, while our results continue to indicate that HFTs play a signficant role in short term
price discovery among large-cap and mid-cap stocks, we see confounding effects coming from
our analysis of the short-horizon price dynamics of small-cap stocks. The results point to
HFTs playing a more important role in highly liquid securities, in line with our priors that
HFTs preferentially trade in liquid securities, but this remains an area for further research.
There are a number of potential implications for follow on research. In particular, some
observers have noted that the predilection for odd-lot trades among modern informed traders
may be driven by a regulatory rule that did not require odd-lot trades to be reported in
the consolidated tape. This rule was changed in December 2013, so that odd-lots are now
reported in the consolidated tape, and so replicating this analysis on a dataset after December
2013 would help triangulate whether this regulatory rule was a key driver of the use of odd-
lots among informed traders. In addition, the difficulty in obtaining statistical significance
for different trader types may be an artefact of our data, which includes only transaction-
by-transaction prices. As a result, the statistical power of our analysis is decreased, most
especially when looking at small trade sizes at high frequencies because small trades are
probabilistically more likely to exhibit bid-ask bounce noise over short horizons. Obtaining
quote level data would go a long way toward stripping out this noise, and would provide a
better specification to analyze how HFTs, who tend to operate in small trade sizes over short
horizons, contribute to price discovery. After all, if HFTs are skilled at stealth trading, we
should expect their signature to be well hidden among the noise of financial markets.
Overall, our results corroborate previous results that indicate that price discovery has be-
come increasingly driven by small trades in recent years, a phenomenon that has coincided
with a larger presence of algorithmic traders. In addition, we show that HFTs using small
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trades play a significant role in the process of price formation, especially when considering
their presence among more liquid and larger capitalization securities. This is in line with
the theoretical expectations of the stealth trading hypothesis, which states that informed
investors attempt to hide their trades so as to prevent leaking information into the market
while accumulating positions.
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APPENDIX

Table 1: Average daily trading volume (million USD)

Type nHFTD HFTD nHFTS HFTS

Cap size
Small 0.74 0.25 0.88 0.11

Mid 4.11 2.36 5.22 1.25

Large 104.50 77.68 105.10 77.08

Superscripts on Type denote demand or supply side of transactions.

Table 2: Weighted price contribution by trade size

Size Category WPC Share of Trades Share of Volume

[1, 100) loff 0.370 0.229 0.082
100 loff 0.479 0.602 0.523

(100, 200] loff 0.071 0.095 0.139
(200, 500] loff 0.053 0.056 0.135
(500, 5000] loff 0.026 0.022 0.130
> 5000 loff 0.000 0.000 0.036

Table 3: Estimation of model (A)

Transactions Volume

Trade size
< 100 0.120*** 0.193***

(7.56) (14.15)
≥ 100 -0.065*** -0.954***

(-1.82) (-11.29)
Proportion 0.945*** 1.761***

(20.31) (18.87)

Adjusted R2 .052 .051
F-test on H0 74.9 510.7

(*), (**) and (***) denote significance at the 10, 5 and 1% levels. t-stats reported
in parentheses.



Table 4: Estimation of model (B)

Transactions Volume

δj<100,HFT 0.000*** 0.134***
(0.03) (21.12)

δj<100,nHFT -0.024*** 0.080***
(-4.06) (14.85)

δj≥100,HFT -0.227*** -1.157***
(-17.90) (-40.01)

δj≥100,nHFT -0.202*** -1.100***
(-15.13) (-37.29)

Proportion 1.226*** 2.020***
(75.30) (63.27)

Adjusted R2 .206 .200
F-test on δj<100 = δj≥100 482.7 2243.7
F-test on δHFT = δnHFT 0.0 0.0
F-test on H0 117.6 1632.4

(***) denotes significance at the 5% levels. t-stats reported in parentheses.

Table 5: Estimation of model (B) for large caps

Transactions Volume

δj<100,HFT -0.039*** 0.086***
(-2.85) (7.28)

δj<100,nHFT -0.065*** 0.029***
(-5.70) (2.803)

δj≥100,HFT -0.342*** -1.632***
(-11.89) (-22.79)

δj≥100,nHFT -0.315*** -1.575***
(-10.31) (-21.58)

Proportion 1.380*** 2.546***
(36.97) (32.37)

Adjusted R2 .198 .282
F-test on δj<100 = δj≥100 169.7 643.7
F-test on δHFT = δnHFT 0.0 0.0
F-test on H0 42.1 479.5

(***) denotes significance at the 5% level. t-stats reported in parentheses.



Table 6: Estimation of model (B) for mid caps

Transactions Volume

δj<100,HFT 0.009*** 0.114***
(0.80) (10.65)

δj<100,nHFT -0.021*** 0.044***
(-2.40) (5.26)

δj≥100,HFT -0.282*** -1.600***
(-15.56) (-33.45)

δj≥100,nHFT -0.252*** -1.530***
(-12.62) (-30.74)

Proportion 1.273*** 2.486***
(53.98) (46.40)

Adjusted R2 .241 .233
F-test on δj<100 = δj≥100 369.2 1430.4
F-test on δHFT = δnHFT 0.0 0.0
F-test on H0 89.2 846.3

(***) denotes significance at the 5% level. t-stats reported in parentheses.

Table 7: Estimation of model (B) for small caps

Transactions Volume

δj<100,HFT 0.023*** 0.158***
(1.79) (13.31)

δj<100,nHFT 0.054*** 0.191***
(5.40) (21.28)

δj≥100,HFT -0.025 -0.542***
(-1.43) (-17.09)

δj≥100,nHFT -0.056*** -0.569***
(-3.41) (-17.90)

Proportion 1.002*** 1.378***
(47.05) (38.97)

Adjusted R2 .190 .182
F-test on δj<100 = δj≥100 47.5 740.1
F-test on δHFT = δnHFT 0.0 0.1
F-test on H0 22.7 584.2

(***) and (**) denote significance at the 5 and 10% levels. t-stats reported in parenthe-
ses.



Table 8: Estimation of model (C)

Window
1 sec 5 sec 10 sec 30 sec

Intercept 0.010 0.020 0.021 0.023
(0.68) (0.43) (0.46) (0.50)

δ<100,HF -0.003 -0.008 -0.005 0.002
(-1.15) (-0.86) (-0.49) (0.26)

δ≥100,HF -0.002 -0.004 -0.001 0.010
(0.57) (-0.43) (-0.10) (1.09)

δ≥100,nHF -0.001 -0.004 -0.001 0.005
(-0.36) (-0.40) (-0.10) (0.53)

(*) Denotes significance at the 5% level. t-stats in paren-
theses.

Table 9: Estimation of model (C) for large caps

Window
1 sec 5 sec 10 sec 30 sec

Intercept 0.005*** 0.010*** 0.013*** 0.017***
(22.44) (30.63) (32.10) (31.63)

δ<100,HF 0.005*** 0.106*** 0.013*** 0.015***
(97.43) (122.10) (123.94) (103.56)

δ≥100,HF 0.007*** 0.014*** 0.018*** 0.021***
(137.34) (166.90) (169.40) (144.40)

δ≥100,nHF 0.003*** 0.005*** 0.006*** 0.008***
(54.90) (61.16) (61.05) (53.17)

(***) Denotes significance at the 5% level. t-stats in parentheses.



Table 10: Estimation of model (C) for mid caps

Window
1 sec 5 sec 10 sec 30 sec

Intercept 0.011*** 0.018*** 0.019*** 0.017***
(12.60) (13.64) (10.50) (7.17)

δ<100,HF 0.002*** 0.008*** 0.012*** 0.022***
(8.56) (21.71) (25.76) (36.63)

δ≥100,HF 0.004*** 0.013*** 0.019*** 0.034***
(16.87) (35.95) (40.04) (55.70)

δ≥100,nHF 0.002*** 0.005*** 0.008*** 0.014***
(8.27) (15.67) (16.35) (22.65)

(*) Denotes significance at the 5% level. t-stats in parentheses.

Table 11: Estimation of model (C) for small caps

Window
1 sec 5 sec 10 sec 30 sec

Intercept 0.021 0.039 0.033 0.043
(0.61) (0.37) (0.30) (0.40)

δ<100,HF -0.018*** -0.043 -0.040 -0.030
(-1.97) (-1.52) (-1.40) (-1.07)

δ≥100,HF -0.017** -0.039 -0.040 -0.025
(-1.85) (-1.41) (-1.43) (-0.87)

δ≥100,nHF -0.008 -0.022 -0.017 -0.007
(-0.91) (-0.79) (-0.61) (-0.24)

(***) and (**) denote significance at the 5 and 10% levels.
t-stats in parentheses.


	Abstract
	Background, literature review and objectives
	Introduction
	Literature Review
	Objectives

	Data and empirical strategy
	The NASDAQ HFT dataset
	Weighted Price contribution
	Econometric tests on price contribution

	Conclusions
	References
	APPENDIX

