
MASTER THESIS

Scalable Inference for Crossed Random
Effects Models

Submitted in partial fulfillment of the requirements for the
Master’s Degree in Data Science

at the BARCELONA GSE

under the supervision of
OMIROS PAPASPILIOPOULOS (UPF)

GIACOMO ZANELLA (BOCCONI)

Maximilian Müller
Barcelona, 22th of June 2020

Contents
1 Introduction 2

1.1 Main Contributions . 2
1.2 Outline of This Paper . 3
1.3 Conventions and Definitions . 3

2 Bayesian Learning as a Linear Algebra Problem 3
2.1 Bayesian Learning as a Sampling Problem . 4
2.2 Sampling from a Gaussian as a Linear Algebra Problem 4

3 Computation of the Cholesky Factor of a Sparse Matrix 4

4 Gaussian Graphical Models and Sparse Cholesky Factors 10
4.1 Fill-In Ratio . 11
4.2 Sparsity and Labelling of Vertices . 11
4.3 Equivalence of Paths inQ and L . 13

5 Special Cases of the 2-Factor Crossed Random Effects Model 13
5.1 CalculatingQ . 14
5.2 abµ Ordering . 14
5.3 Balanced Levels . 15
5.4 Markovian Design . 15
5.5 Problematic Design . 15
5.6 Erdös-Renyi . 16

6 Sparsity of Special Arrangements of the 2-Factor Crossed Random Effects Model 16
6.1 The Position of µ . 17
6.2 Fill-In of abµ Ordering with Balanced Levels . 17
6.3 Fill-In of Markovian Design . 18
6.4 Fill-In of Problematic Design . 19

7 Numerical Studies 20
7.1 Spam and Matrix Packages . 20
7.2 Position of µ . 21
7.3 Markovian Design . 22
7.4 Problematic Design . 24
7.5 Erdös-Renyi . 25

8 Summary 25

9 Future Work 26
9.1 Approximate Cholesky Methods . 26
9.2 Exploration of Full Cost for MCMC Algorithm . 26
9.3 Simulation of Balanced Random Designs . 27

Appendices 27

A Detailed Calculation ofQ 27

1

1 Introduction
In many modern statistical setups crossed random effects models play an increasingly important role. They
are additive models that relate a response variable y to categorical predictors and are commonly used to
describe the different sources of variation in a dataset (Papaspiliopoulos et al. [2019]). In general, many
categorical predictors can be modelled. However, the example we will use throughout this thesis is the
arrangement with 2 factors, where e.g. customers are linked to products through ratings, orderings or clicks
on webpages. This framework is especially interesting since it can describe typical recommender system
problems. The 2-factor crossed random effects model and the response variable yij can be written as

yij = µ+ ai + bj + εij (i, j) ∈ S ⊆ [I]× [J] (1)

where ai is the ith level of the categorical factor a, bj is the jth level of the categorical factor b and µ has the
interpretation of a global mean. For this paper we will refer to the categorical factors a and b as customers
and products, respectively. The model parameters are assumed to follow normal distributions:

ai
iid∼ N(0, τ−1a)

bj
iid∼ N(0, τ−1b)

εij
iid∼ N(0, τ−1e)

p(µ) ∝ 1

In the more general case the precision parameters τ might underlie a distribution themselves which can
vary with i, j. For the scope of this paper we will take them to be independent of i, j and to be constant and
known. For convenience, we can store the global parameters in a parameter vector

β = (µ, a1, ..., aI , b1, ..., bJ)

The most prominent example of the recommender system setup is the so-called Netflix problem which
has challenged thousands of participants to predict movie grades of Netflix customers. In the dataset there
were about 100.000.000 ratings of 17.700 movies by 480.000 customers. These numbers are typical for
many of todays problems, often the data contains even millions of customers and equally millions of prod-
ucts, making it very high-dimensional. Applying statistical learning in this context and trying to learn a
predictive function that maps the data to the response variable can therefore be very challenging. As we
will see in this thesis, the computational part of Bayesian inference can be boiled down to sampling from
posterior distibutions, which in return can be turned into convenient linear algebra problems if the posterior
is of Gaussian form. For crossed random effects models this is the case, as it will be shown in Section 5.1.
The required algorithms, however, scale cubically with the dimension of the data. In the case of the high-
dimensional setting in recommender systems this is therefore unpractical. In particular, the computational
bottleneck is the computation of the Cholesky factor of the precision matrix. Since the precision matrix of
the posterior is also sparse for crossed random effects models, one can, however, take advantage of sparse
linear algebra methods. As we will show, this can reduce the computational complexity greatly and make
inference based on linear algebra methods scalable to high dimensions.

1.1 Main Contributions
One of the main contributions of this paper is theorem 3.2, where it is derived that the crucial point for
efficient computation of the Cholesky factor is not only the sparsity of the Cholesky factor, but also the
arrangements of the non-zero entries. In particular, if the exact structure of L is known, the number of flops
required for the calculation of L can be expressed in terms of the number of 3-cycles in the graph of L.
This leads to a lower bound of O(‖L‖0) and an upper bound of O(‖L‖1.50), where ‖L‖0 are the number of
non-zero entries inL. Even though there is a wide range of literature dealing with the computational cost of
Cholesky decomposition, up to our knowledge it has not been expressed in terms of the number of 3-cycles.
We furthermore extend this result to the more general case where the exact sparsity structure is not exactly
known but has to be predicted taking advantage of the concepts of future set (theorem 2.8 in Rue and Held
[2004]) and the fill (Gilbert [1994]).

2

A big part of this paper is then devoted to a thorough exploration of 2-factor crossed random effects
models and their interaction with sparsity. Since this is hard for the general case, we introduce specific
designs which allow simpler derivations. We show that the position of µ in the so-called abµ ordering is
optimal for reduced fill-in ratio. We then introduce the Markovian Design and the Problematic Design, for
which we can prove that the resulting Cholesky factor will be sparse in one case and dense in the other.

Furthermore, we investigate the performance of the R packages Spam and Matrix on these cases
and confirm our analytical results numerically. We also investigate random Erdös-Renyi graphs and find no
evidence that these can be ordered such that the Cholesky factor is sparse. In all investigated cases we find
hints that approximations of the Cholesky factor could be an interesting approach for further decrease of
the cost of computing L.

1.2 Outline of This Paper
The outline of this paper is as follows: In Section 2 it is shown how Bayesian learning can be turned into
a linear algebra problem and in particular into the computation of the Cholesky factor L of the precision
matrix. Then, in Section 3 the calculation of the Cholesky factor is examined more thoroughly and bounds
for the computational cost are derived. Graphical models are introduced as a handy tool to investigate the
conditions for sparsity ofL in Section 4. In particular, the concepts of future set and fill graph are presented
and related to sparsity and specifically the cost of computing L. Section 5 introduces the special designs
and orderings of the 2-factor crossed random effects model, whose sparsity is investigated analytically in
Section 6. Finally, the results of the numerical studies are presented in Section 7. In Section 8 the findings
of this paper are summarized and and outlook over possible future work is given in Section 9.

1.3 Conventions and Definitions
For this paper, we will adapt the following conventions and definitions: Vectors x will be denoted in bold
lowercase letters and matricesA in bold uppercase letters. Scalars can be upper and lowercase, but not bold.
A range is indicated with a semicolon, e.g. 3:6 indicates the set {3, 4, 5, 6}. This is also used for vector and
matrix subsetting. When subsetting a vector or a matrix, a single colon : represents all possible elements of
the corresponding dimension. Q3:6,: denotes the submatrix of Q that is obtained if one selects all columns
and rows 3 to 6. For single elements of a matrix the comma is usually neglected for convenience. Qij hence
denotes the element in row i and column j of matrix Q. A big part of this thesis is devoted to deriving
sparsity conditions for Choleksy factors. We therefore want to give formal definitions to the most relevant
concepts. For a positive definite square matrix Q the decomposition into the product of a lower triangular
matrix L and its conjugate transpose is called Cholesky factorization:

Q = LLT

We refer to L as the Cholesky factor ofQ. A square matrixB ∈ Rn×n is sparse if the number of non-zero
entries in B is of O(n). Sparsity is assessed in terms of the non-zero elements of a matrix. These can be
expressed conveniently as the L0-norm:

‖Q‖0 = |{Qij |Qij 6= 0}|

is the number of non-zeros in Q. And finally, for measuring the size of matrices or differences between
two matrices it is helpful to introduce the Frobenius norm. For a Matrix A ∈ Rn×m with entries aij the
Frobenius norm is defined as

||A||F =

√√√√ n∑
i=1

m∑
j=1

|aij |2

2 Bayesian Learning as a Linear Algebra Problem
In Section 5.1 and in more detail in appendix A it will be shown that the posterior of a 2-factor crossed
random effects model is a sparse Gaussian. In this section we will derive how for this case Bayesian
learning becomes first a sampling problem which can then be formulated as a linear algebra problem.

3

2.1 Bayesian Learning as a Sampling Problem
In Bayesian learning, one deals with data y and parameters θ. For the parameters, a prior p(θ) is assumed
and for the data, a model p(y|θ) is defined. One is then usually interested in the posterior distribution
p(θ|y) which can be obtained by Bayes rule:

p(θ|y) =
p(y|θ)p(θ)

p(y)
=

p(y|θ)p(θ)∫
p(y|θ)p(θ)dθ

∝ p(y|θ)p(θ)

In order to obtain the exact posterior distribution, a normalization is necessary, which involves an integral
over p(y|θ)p(θ), i.e. the non-normalized posterior. Also, marginalization or computing expectations with
respect to the posterior require the computation of integrals with respect to the posterior. This need for
integration is usually the main computational bottleneck. For crossed random effects the integration has to
be performed over the space of factors and can easily become infeasible as the space is typically very high-
dimensional. Therefore, alternatives like MCMC methods are commonly used. The principle of MCMC
methods is to draw samples from a distribution that is not necessarily normalized such that the relative
importance of the parameter space is maintained. These random samples are then used to approximate the
integral in a way that it converges to its true expression.

2.2 Sampling from a Gaussian as a Linear Algebra Problem
It is now clear that Bayesian inference can be addressed by sampling from the posterior distribution. In
the case of 2-factor crossed random effects models the posterior is a Gaussian. In order to obtain a sample
V from a m-dimensional normal distribution N(µ,Σ) one usually first samples from a m-dimensional
standard normal, z ∼ N(0, Im). V can then be calculated via

V = µ+ L̃z

where L̃ is the Cholesky factor of Σ = L̃L̃T . In many cases, also for 2-factor crossed random effects
models, the precision matrixQ is easier to obtain. V is then calculated by first solving

LTx = z

for x, whereL is the Cholesky factor ofQ = LLT and again z ∼ N(0, Im). V is then obtained according
to

V = µ+ x

In both cases the computational bottleneck is the calculation of the Cholesky factor as it requires O(n3)
flops for dense matrices. However, ifQ is sparse, sparse linear algebra methods can be applied. As we will
see in the following section, a sparse Q is not enough for an efficient calculation of L. We will therefore
investigate how L is computed and under what circumstances we can improve its cost.

3 Computation of the Cholesky Factor of a Sparse Matrix
In this section we will investigate how the Cholesky factor is calculated and derive bounds for the compu-
tational cost if L is sparse. A well-known algorithm for the calculation of L is the Gaxpy-Rich algorithm
(4.2.5 in Golub and van Loan [2013]) which is based on the following observations: For a matrix Q with
Cholesky factor L, i.e. Q = LLT , one can write

Qij =

j∑
k=1

LjkLik ∀i ≥ j

which follows directly from the definition of matrix multiplication. One can rearrange terms and define vij
as

LjjLij = Qij −
j−1∑
k=1

LikLjk ≡ vij ∀i ≥ j

4

The elements of the Cholesky factor can then be calculated from vij via

Ljj =
√
vjj

Lij =
vij
Ljj

=
vij√
vjj

(2)

One can hence compute vij and Lij by iterating through the columns of L and using equations (2). This
leads to the Gaxpy-Rich algorithm:

Algorithm 1: Gaxpy-Rich
Result: Calculates the Cholesky factor L of a matrixQ
for i=1:n do

set Li1 = Qi1√
Q11

end
for j=2:n do

for i=j:n do
compute vij = Qij −

∑j−1
k=1 LikLjk;

set Lij =
vij√
vjj

;

end
end

For dense matrices the algorithm needsO(n3) flops to calculateL because the two for loops are ofO(n)

and the calculation of
∑j−1
k=1 LikLjk is also of O(n), as it is an element-wise multiplication of vectors, i.e.

an inner product. This last observation is important: In order to calculate an entry Lij the inner product
between rows i and j in L has to be calculated. This is illustrated in Figure 1, where for the calculation of
L75 (green) the inner product between the blue rows has to be taken.

In order to see how sparsity can help to improve the cost of computing L, it is instructive to note from
equation (2) that

Lij ∝ Qij −
j−1∑
k=1

LikLjk (3)

This can be used to make strong statements about the sparsity structure of L that are at the heart of efficient
computations of the Cholesky factor.

Lemma 3.1. If Lij = 0 one of the following three conditions has to be met

• Qij = 0 and LikLjk = 0 ∀ k ∈ {1, ..., j − 1}

• Qij 6= 0 and LikLjk 6= 0 for some k ∈ {1, ..., j − 1}, but Qij =
∑j−1
k=1 LikLjk

• Qij = 0 and LikLjk 6= 0 for some k ∈ {1, ..., j − 1}, but
∑j−1
k=1 LikLjk = 0

Proof. The Lemma follows directly from equation (3).

The later two conditions are referred to as numerical cancellation.

Definition 3.1. We define numerical cancellation as the case when LikLjk 6= 0 for some k ∈ {1, ..., j−1},
but Lij = 0.

Furthermore, one notes that if we knew the exact sparsity structure of L, i.e. the positions of the non-
zero elements beforehand, we would only have to calculate these non-zero elements. This can lead to a
great reduction in computational cost if L is sparse.

Theorem 3.2. LetQ = LLT be a matrix with Cholesky factor L. Let GL be an undirected graph that has
edges between vertices i > j if and only if Lij 6= 0. If the positions of the non-zero entries of L are known,
the Cholesky factor can be computed with

f = O (‖L‖0 + η3(L))

flops, where η3(L) is the number of three-cycles in GL.

5

Figure 1: Illustration of
∑j−1
k=1 LikLjk for i = 7, j = 5. The sum that is required for the calculation of L75

(green cell) corresponds to an inner product between row 5 and row 7, which are marked blue.

Proof. For every non-zero entry of L, vij has to be initialized. This thus requires ‖L‖0 flops. Furthermore,
after vij was computed, every Lij is obtained by vij/

√
vjj , which requires another ‖L‖0 flops. For the

calculation of vij we will distinguish the two cases where i = j and where i 6= j.
If i = j, we are calculating diagonal entries of L and the product LikLjk becomes L2

ik. For every
diagonal element Lii we thus have to square all elements of row i and subtract them from Qii. This is done
for every diagonal element which leads to square-subtracting each off-diagonal non-zero element once,
requiring at most O(‖L‖0) flops.

For i 6= j we can assume i > j without loss of generality, because we know that the Cholesky factor
L is lower triangular. Since we know the exact structure of L, we do not have to compute all products
of Ljk × Lik, but only those for which Ljk, Lik are both non-zero. For every non-zero element Lij the
computational cost resulting from

∑j−1
k=1 LikLjk is therefore of the order of the number of times Lik, Ljk

are pairwise non-zero. Lik 6= 0, Ljk 6= 0, Lij 6= 0 for k < j < i however just correspond to three edges
in GL that connect nodes i, j, k and thus create a triangle. This means that the fact that in order to calculate
Lij it is necessary to compute the product between Ljk, Lik because they are both non-zero is uniquely
represented by a triangle in GL. The overall cost resulting from the sums

∑j−1
k=1 LikLjk is hence of the

order of the number of triangles in GL which we denote with η3(L):

η3(L) = |{(i, j, k)|Lik 6= 0, Ljk 6= 0, Lij 6= 0, k < j < i}| (4)

Corollary 3.2.1. More specifically, the cost from theorem 3.2 can be bounded by

O (‖L‖0) ≤ f ≤ O
(
‖L‖0 + ‖L‖1.50

)
Proof. The lower bound is immediate: If there is no three-cycle inGL, η3(L) = 0 and the cost isO (‖L‖0).
For the upper bound it is necessary to find the maximal number of 3-cycles in a graph with ‖L‖0 edges.
In order to address this, one has to note that the most number of 3-cycles appear in a maximally connected

6

graph. As we have ‖L‖0 edges and a fully connected graph with n nodes has n(n− 1) edges, the number
of nodes for a maximally connected graph with ‖L‖0 edges will be of O(

√
‖L‖0). For a fully connected

graph with n nodes it is trivial to find the number of 3-cycles since it is equivalent to the number of ways
one can choose 3 nodes from n, i.e.

(
n
3

)
. Hence,

η3(L) ≤ O

((√
‖L‖0
3

))

Using
(
n
k

)
≤ (enk)k < nk for k > e, this can be written as

η3(L) ≤ O
(
‖L‖1.50

)
This result is confirmed in Rivin [2002] (theorem 4), where the author shows bounds for general k-cycles.

An immediate implication of theorem 3.2 is that neither the number of non-zero entries in Q nor in L
completely determine the computational cost of calculating the Cholesky factor. Instead, it is relevant how
the non-zero entries in L are ordered with respect to each other, i.e. how many 3-cycles they form. The
intuition behind the implications of theorem 3.2 can be understood from Figure 2. In the left case, the graph
of L contains no cycles. This is equivalent to the fact that for no k < j < i there are entries Lik, Ljk that
are both non-zero, which can also be seen immediately from L in matrix form. Hence, for no off-diagonal
entry Lij a product LikLjk has to be computed.
In the right case, however, there are 3 combinations of k < j < i such that Lik, Ljk that are both non-zero.
Each of these combinations requires 2 additional flops (computing the product and substracting it). InL, the
colored cubes represent the pairwise non-zero Lik, Ljk and the colored dot the entry Lij which is affected
by that. The equivalent 3-cycles are drawn in the same color in the graph of the Cholesky factor. For L56

(blue), 2 additional flops are required as L53 and L63 are both non-zero, leading to the blue 3-cycle in the
graph. For L53, 4 additional flops are required since L51, L31 6= 0 as well as L52, L32 6= 0, resulting in the
two green 3-edged cycles.

It is reassuring to note that the bounds from theorem 3.2 are in accordance with the well-known bounds
for dense matrices: In a dense matrix ‖L‖0 = O(n2) and thus the complexity is ≥ O(

[
n2
]1.5

) = O(n3).
This gives a hint when the computational cost of calculating L can be of O(‖L0‖1.5).

Proposition 1. Suppose the Cholesky factor L ∈ Rn×n of a matrix Q is sparse, i.e. has ‖L‖0 = O(n)
non-zero entries and the following structure: The first

√
n rows of the lower triangular structure ofL and the

complete diagonal are non-zero, but all other entries are zero. Then the computational cost f of calculating
the Cholesky factor is

f = O(‖L‖1.50) (5)

.

Proof. First it is to note thatL indeed is a sparse matrix: The number of non-zeros is of orderO(n+
√
n
2
) =

O(n), because there are order
√
n ×
√
n non-zero entries on the off-diagonal. The off-diagonal non-zero

entries of L however just form a dense block within L. It is well known that the complexity of calculating
the cholesky of a dense matrix is cubic in its dimension. This implies that the cost of calculating the
off-diagonal entries is of

O(
√
n
3
) = O(n1.5) = O(‖L‖1.50)

which is just the upper bound from corollary 3.2.1.

Proposition 1 indicates that the upper bound from corollary 3.2.1 might not be very tight, unless the
sparsity structure of L is such that it partly resembles that of a dense matrix.

For the results of this section we assumed that the sparsity structure of L is exactly known. This is
usually not the case. The reason for that is that numerical cancellation typically cannot be predicted from
the structure of Q. It is only found after the corresponding element of L is calculated exactly. Since a full
calculation of the element Lij is necessary in order to check whether numerical cancellation occurs, these

7

zero-values in L have to be treated like non-zero elements if one is interested in predicting the sparsity
structure of L. Methods, some of which we introduce in the next section, therefore usually anticipate the
sparsity structure of L such that one can distinguish between elements that are zero and elements that can
be non-zero and thus have to be calculated. The elements that can be non-zero might still turn out to be
zero, due to numerical cancellation, but this does not help for the reduction of computational cost.

8

(a) Precision matrix 1. (b) Precision matrix 2.

(c) The Cholesky factor of precision matrix 1,
‖L‖0 = 11.

(d) The Cholesky factor of precision matrix 2,
‖L‖0 = 13. Squares of the same color are
needed to calculate the dots of the same color.

(e) The graph of the Cholesky factor 1. It does
not contain any cycles.

(f) The graph of the Cholesky factor 2. It con-
tains 3 cycles.

Figure 2: Equivalence of number of 3-cycles in GL and the number of flops required for the calculation of
L. In the left case there are no 3-cycles in the graph of the Cholesky factor and hence no product Lik, Ljk
has to be calculated. In the right case, there are 3 3-cycles. The one marked blue represents the fact that
L53, L63 6= 0 which leads to 2 additional flops in the calculation of L65 The ones marked in green represent
the fact that L31, L51 6= 0 which leads to 4 additional flops in the calculation of L53.

9

4 Gaussian Graphical Models and Sparse Cholesky Factors
It is well known that the sparsity of a precision matrix Q in Gaussian models follows directly from the
conditional independence structure. It is therefore useful to consider the conditional independence graph G
of the parameters. The Graph consists of the set of labelled nodes or vertices V = {1, 2, ..., n} and the set
of edges E. The parameters of the model, which we denote with x = (x1, ..., xn), are represented by the
vertices in V . E connects the vertices such that there is no edge between node i and j if and only if

xi ⊥ xj | x−ij

which is known as Markov property. It is well known that conditional independence manifests itself with a
zero-entry in the precision matrix (theorem 2.2 in Rue and Held [2004]) and hence

xi ⊥ xj | x−ij ⇐⇒ Qij = 0 ⇐⇒ no edge between nodes i and j in G (6)

This makes it easy to deduce the graph structure from a precision matrix and vice versa. Now let L be the
Cholesky factor of Q = LLT . In order to make statements about the sparsity of L it is useful to define for
1 ≤ i < j ≤ n the future of i except j as the set of indices

F (i, j) = {i+ 1, .., j − 1, j + 1, ...n}

It can be shown (2.8 in Rue and Held [2004]) that for L a statement regarding conditional independence
similar to the one forQ can be made:

Theorem 4.1. Let x be a random vector with mean µ, precision matrix Q and conditional independence
graph G like in (6) (this is, x is a GMRF). Let L be the Cholesky factor ofQ = LLT . If and only if xi and
xj are independent given xF (i,j) then Lij = 0.

xi ⊥ xj | xF (i,j) ⇐⇒ Lji = 0

As an important corollary they derive a simple and sufficient condition for Lji = 0:

Corollary 4.1.1.
F(i,j) blocks all paths from i to j in G =⇒ Lji = 0

This means that for a given graph we can make use of the future set and infer the structure of L. We
can immediately tell which entries Lij are zero and which can be non-zero and thus have to be calculated
according to equation (2). As explained, these entries can still be zero, but this cannot be anticipated by
the future set. It is therefore helpful to define the fill of Q as the set of pairs of vertices corresponding to
possible non-zero entries in L:

Definition 4.1. The fill ofQ is defined as

fill(Q) = {(i, j) : ∃ path from i to j in G whose vertices are all less than min(i, j)}

and the fill-graph ofQ is the undirected graph implied by fill(Q).

Here it is to note that the fill contains pairs of vertices which can be understood as directed edges in a
graph. Since (i, j) ∈ fill(Q) ⇐⇒ (j, i) ∈ fill(Q), the resulting fill-graph is however indeed undirected.
If we refer to the number of edges or cycles in the fill-graph, we therefore implicitly mean the number of
undirected edges/cycles. In particular, (i, j) and (j, i) for i 6= j are counted as a single, undirected edge.

Definition 4.2. nL denotes the number of undirected edges in the fill-graph ofQ.

It is important to note that the fill contains all pairs of vertices for which there is a path that cannot
be blocked by the future set. It in particular also contains all direct paths, i.e. the ones corresponding to
non-zero entries in Q. Using corollary 4.1.1 one can therefore understand the edges in the fill-graph as the
possible non-zero entries in L that have to be computed. nL hence counts precisely those entries that are
relevant for the computational cost of obtaining L. Theorem 3.2 and corollary 3.2.1 are easily extended

10

to this concept: If instead of the exact non-zero structure of L only the fill is known, one has to take the
number of 3-cycles in the fill-graph instead of the number of 3-cycles in in the Graph implied by L for
a bound on computational cost. In the same spirit, the exact number of non-zeros ‖L‖0 can be replaced
with nL. nL is therefore a crucial quantity to monitor when assessing the computational cost of Cholesky
factorization.

Corollary 4.1.2. For a matrix Q ∈ Rn×n with non-zero diagonal elements and Cholesky factor L the
number of possible non-zeros is

nL =
1

2
(|fill(Q)|+ n)

Proof. fill(Q) contains all pairs of vertices i, j for which there exists a path that cannot be blocked by the
corresponding future set. For i > j both (i, j) and (j, i) are in fill(Q), but only Lij can be non-zero. For
each of the n diagonal elements Lii there is only one edge (i, i) in fill(Q). The total number of possible
non-zero elements is thus nL = 1

2 (|fill(Q)|+ n).

4.1 Fill-In Ratio
It is now clear that in order to assess the computational cost of calculating L the relevant measure is the
size of the fill. For sparse matrices a convenient way of expressing it is the fill-in ratio

fir =
nL
nQ

(7)

where nQ is the number of non-zero entries in the lower triangular part ofQ, i.e. nQ = 1
2 (‖Q‖0 +n). The

fill-in ratio hence is just the ratio between the number of possible non-zero elements in L and the number
of non-zero elements in the lower triangular part of Q. Of special interest is how the fill-in ratio scales
with the dimension ofQ and parameters of a underlying model. We will provide explicit results for special
designs of the 2-factor crossed random effects model in Section 6.

Corollary 4.1.3. For a matrixQ with Cholesky factor L the fill-in-ratio is always greater or equal to 1.

Proof. Since a non-zero entry in Q implies that the corresponding edges are in fill(Q), it follows directly
that nQ ≤ nL. The equality only holds ifQ and L have the same sparsity structure.

It should again be stressed that this does not mean thatL is always more or equally dense thanQ. There
can be less non-zero entries in L, but these cannot be anticipated by the future set.

4.2 Sparsity and Labelling of Vertices
It should be noted that what the future set is depends on the labelling of the vertices, which can be chosen
freely. This means, what is called node 1 and what is called node 7 does not matter since the resulting graph
will remain the same. It does however matter for the sparsity of L. This is straightforward to see from a
simple example (2.4.2 in Rue and Held [2004]).

The two graphs in Figure 3 are equivalent. The only difference is that in the left graph the central node
is labelled as 7 and in the right graph as 1. For both graphs Q is equally sparse, but L is not. In the left
graph, for any pair of nodes i 6= 7, j 6= 7 and i < j, the central node 7 lies in F (i, j). As node 7 blocks all
paths between other nodes, according to equation (4.1.1), Lij = 0 for these pairs of i, j. In the right graph,
however, the central node is labelled 1 and thus never lies in any future set. Consequently, the future set of
any i < j cannot block the path between i and j. (i, j) and (j, i) are thus in fill(Q) and Lij 6= 0 has to be
assumed.
This illustrates that permuting the precision matrix can increase the sparsity of L. Most algorithms for
sparse calculation of the Cholesky factor therefore rely on finding a permutation with permutation matrix
P such that

QP = PQP T

and its corresponding Cholesky factor have a reduced fill-in ratio.

11

(a) The central node is 7 and it lies in F (i, j) for
all i, j 6= 7.

(b) The central node is 1 and it lies in no F (i, j)
for any i, j 6= 1.

(c) The Precision Matrix corresponding to graph
with 7 as central node.

(d) The Precision Matrix corresponding to graph
with 1 as central node.

(e) The Cholesky factor of the precision matrix
corresponding to the graph with 7 as central node
is maximally sparse.

(f) The Cholesky factor of the precision matrix
corresponding to the graph with 1 as central node
is full.

Figure 3: The ordering of nodes matters for the sparsity of L: Every pair of nodes is independent given
their future set in the left graph, but no pair of nodes in the right graph. The Cholesky factor of the left
precision matrix is thus maximally sparse, whereas the one of the right matrix is full.

12

4.3 Equivalence of Paths inQ and L
In order to get an intuition of what conditional independence given the future set means, it is instructive to
look at how a path in the graph can be understood in the precision matrix and how the future set relates to
it. We already know that an edge between node i and j is just an entry in Qij . If now in the graph also k is
connected to j, but not to i, one could move from i to k via j. In Q this means moving from the non-zero
entry Qij to Qjk or Qkj which is just moving along the row or column from Qij . In other words, moving
from node to node via edges is just moving from one non-zero entry in Q to another one along the rows
or columns of the matrix. If one now wants to condition on the future set or equivalently check whether
(i, j) ∈ fill(Q), this simply means not using the corresponding rows and columns. An example is shown
in Figure 4, where for a given graph one is interested if L96 can be non-zero. This principle is useful if one
wants to make explicit statements about the sparsity of L for cases where the precision matrix has a pattern
that cannot be represented instructively in the conditional independence graph. In particular, we will take
advantage of it in Section 6.4.

(a) Graph (b) Precision matrix

Figure 4: Equivalence of a path in a conditional independence graph and the corresponding precision matrix:
We are interested in whether L96 6= 0, i.e. if F (6, 9) blocks all paths between 6 and 9 or if (9, 6) ∈ fill(Q).
In the graph of Q the future set is immediate to see, it corresponds to the red nodes. We can see that there
exists a path between nodes 6 and 9 that does not pass a node in the future set. (6, 9) and (9, 6) are thus
in fill(Q). An edge in the graph corresponds to a non-zero entry in the precision matrix. Two edges are
thus connected if they share a common node, i.e. are in the same row or column in the precision matrix. If
one wants to find a path in the precision matrix, one can therefore move from non-zero entry to non-zero
entry along rows and columns. In the figure we can for example start at node 6 and move to row 3, because
there is a non-zero entry at Q36. From there, we can move along the row to Q35, then to Q15 and finally
to Q19. The path is marked blue and is equivalent to the path in the graph. As we did not use columns or
rows that belong to the future set (marked red), we can conclude that (9, 6) ∈ fill(Q) and L96 6= 0 has to
be assumed.

5 Special Cases of the 2-Factor Crossed Random Effects Model
For the rest of this paper we will focus on making explicit statements regarding the sparsity structure of Q
and L for the 2-factor random crossed effects model. Since it is hard to derive results for the most general
case, we will introduce special arrangements and designs which allow to derive explicit results and give a

13

framework that simplifies sampling. These special cases are then investigated analytically in Section 6 and
numerically in Section 7. We will start by first deriving the general structure of the precision matrix Q of
the posterior distribution.

5.1 CalculatingQ
Recalling the definition of the 2-factor random crossed effects model in equation (1) we can explicitly
calculate the non-zero entries ofQ by applying Bayes theorem:

p(β|y) =

=
p(y|β)p(β)

p(y)

∝ p(y|β)p(β)

∝ exp
(
βTQβ

)
(8)

This can be used to read off the entries of the precision matrix Q. The detailed calculation can be found in
Appendix A. For convenience, we define nij = 1(i,j)∈S as 1 if we have an observation for ai and bj and
0 else. N =

∑
i,j nij is then the total number of observations, ni: =

∑
j nij the number of times ai was

observed and n:j =
∑
i nij the number of times bj was observed. The entries of the precision matrixQ for

β|y are then:

Qµµ|y = Nτe

Qµai = ni:τe

Qµbj = n:jτe

Qaiai = τa + τeni:

Qbjbj = τb + τen:j

Qaibj = τe

(9)

where i ∈ (1, ..., I) and j ∈ (1, ..., J). It is to note that conditional on µ the conditional independence
graph of Q is bipartite, i.e. there are no direct links between customers or products. This implies a natural
ordering of the model parameters:

5.2 abµ Ordering
Assigning lower labels to customers ai than to products bj and the highest label to µ will be referred
to as abµ ordering. In particular this means that customers have labels {1, ..., I}, products have labels
{I + 1, ..., I + J} and µ has label I + J + 1. In Section 6.2 we will prove that assigning this label to µ is
optimal for reduced fill-in.

As a consequence of abµ ordering, the precision matrix for the balanced level case with I = J can be
split into 4 blocks that fully describe the matrix:

Qaa = Q1:I,1:I

Qbb = QI+1:2I,I+1:2I

Qab = Q1:I,I+1:2I

Qµ = Q1:2I+1,2I+1

(10)

The Qaa block describes all direct links between customers, the Qbb part the ones between products and
the Qab part all direct links between customers and products. Due to the bipartite structure of the model
bothQaa andQbb are diagonal matrices. The two precision matrices in 5 are examples of abµ ordering.

14

5.3 Balanced Levels
Balanced levels mean that each customer ai is linked to exactly n(a) products and similarly, each product
bj is linked to exactly n(b) customers. For many derivations we will additionally assume I = J , i.e.

n(a) = n(b) ≡ d (11)

The conditional independence graph is then d-regular.

5.4 Markovian Design
In this arrangement we assume balanced levels, I = J and abµ ordering. We furthermore require that
customer 1 has rated the last d products ({2I−d, ..., 2I}), customer 2 the products {2I−d−1, ..., 2I−1},
..., customer I the products {I + 1, 2I − d + 1, ..., 2I}. Then the customer-product block Qab has anti-
diagonal structure. Note that this arrangement within the given class of graphs means that neighbouring
customers have maximal overlap in the products they rated. The corresponding precision matrix can be
seen in Figure 5 for I = 20, d = 4. This design is referred to as Markovian Design because the conditional
independence graph is similar to a Markov chain with periodic boundary conditions.

5.5 Problematic Design
In this arrangement we again assume balanced levels, I = J and abµ ordering. The precision matrix of this
case can be seen in Figure 5. The arrangement corresponds to a case where neighbouring customers have
almost minimal overlap in their rated products. In general similar customers exist, but every customer has
an almost individual product (on the diagonal) that for many customers is fairly far away from the rest of
their products, which are aligned next to each other. For given I, d the customer-product matrixQab can be
obtained from the following algorithm:

Result: Fills the customer-product part of the precision matrix according to the Problematic Design
Initialize c as an empty array;
Initialize pivot=1;
InitializeQab as an I × I matrix of zeros;
for r=1:(I-1) do

Qab(r, r) = 1;
for i in 1:d-1 do

if r == pivot then
append pivot to c;
pivot = pivot+ 1;

end
if pivot == I + 1 then

pivot = 1;
end
Qab(r, pivot) = 1;
pivot = pivot+ 1;

end
end
SetQab(I, c) = 1;

The design is referred to as problematic because it creates a fill-in ratio that increases linear with I (see
Section 6.4) and thus a possibly dense Cholesky factor.

15

(a) Markovian Design
(b) Problematic Design: very similar customers exist that
differ mostly by one product.

Figure 5: Precision matrices for Markovian Design and Problematic Design for I = 20, d = 4. The black
lines show the separation that is induced by the abµ ordering: The left upper block is the Qaa block, right
next to it is the Qab block. Below the Qab block is the Qbb block. The last row/column corresponds to the
Qµ blocks.

5.6 Erdös-Renyi
The Erdös-Renyi case can be seen as the probabilistic version of the balanced-level-case, because we only
require d-regularity in expectation. For the case of I = J , this is achieved if there is a direct link between
every customer ai and every product bj with probability p and there is no direct link with probability 1− p,
where

p =
d

I
(12)

Now the number of products a customer has rated and vice versa will follow a Binomial distribution with
parameters I and p. This implies that in expectation every product will be rated by I×p = d customers and
every customer will be linked to d products. Random draws from the precision matrix of the Erdös-Renyi
case are easy to generate and therefore especially interesting for numerical experiments.

6 Sparsity of Special Arrangements of the 2-Factor Crossed Random
Effects Model

In this section we want derive explicit results for the 2-factor crossed random effects models. For this we
will mostly consider the special arrangements that were introduced in Section 5.

Theorem 6.1. In the balanced-levels-case, the precision matrix is sparse for I = J and d � I . More
specifically,

‖Q‖0 = I(6 + 2d) + 1

Proof. In the balanced level-case for I = J we have ni: = n:j = d. As customers and products are only
linked to themselves directly, they create 2I entries. µ is linked to all customers and all products as well as
to itself and creates thus 4I + 1 entries inQ. The customer-product links are equivalent to the total number
of observations N =

∑
i,j nij = Id which leads to 2Id entries inQ. Summing up these entries gives

‖Q‖0 = I(6 + 2d) + 1

from which nQ follows trivially. As the number of non-zero entries is of O(I) for d � I , Q is a sparse
matrix.

16

6.1 The Position of µ
Even for general crossed random effects models a strong statement about the position of µ can be obtained:

Theorem 6.2. The fill-in ratio is a non-increasing function of the label of µ.

Proof. Let u be the label of µ and ν be the parameter corresponding to label u+ 1. As the number of non-
zero entries ofQ is independent of the labelling of nodes, it is sufficient to show that nL is a non-increasing
function of u by showing that |fill(Q)| is a non-increasing function of u. Since µ is connected to all other
nodes there is a path between any nodes i 6= j that only passes through µ. All pairs of nodes (i, j) for which
u < min(i, j) will hence be in fill(Q). Now consider the case where µ and ν swap labels, i.e. µ has label
u′ = u+ 1 and ν has label u. The resulting fill is denoted with fill′(Q). Then all pairs of nodes (i, j) for
which u′ < min(i, j) are in fill′(Q) and

i, j ∈ fill′(Q) =⇒ i, j ∈ fill(Q)

because all other pairs of nodes that are connected through paths not involving µ are not affected by the
swap. Hence,

|fill(Q)| ≥ |fill′(Q)|

From theorem 6.2 it follows immediately that in order to reduce the fill-in ratio one should always assign
the highest possible label to µ, which is the case for the abµ ordering. Then only the direct links to µ will
create non-zero entries in L. These sum up to I + J + 1 (counting the µ− µ entry as well).

6.2 Fill-In of abµ Ordering with Balanced Levels
It is convenient to consider the abµ ordering with balanced levels and I = J , because it gives a framework
where it is possible to explicitly calculate the fill-in-ratio of certain configurations:

Theorem 6.3. Whether or not a precision matrix Q with balanced levels, abµ ordering and I = J can
have a sparse Cholesky factor depends only on product-product paths. In particular, the number of possible
non-zero entries in the Cholesky factor is

nL = I(3 + d) + 1 + nbb

where nbb are the number of possible non-zero entries that are created through paths from one product to
another.

Proof. The proof relies on theorem 4.1.1. With the abµ ordering, all products lie in the future set of any two
customers. As there are no direct links between customers and products, the future set thus blocks every
path from one customer to another. Consequently, the only customer-customer entries in the Cholesky
factor will be the diagonal ones. Customer-customer paths hence create I possible non-zero entries in L.

In the same way, all customer-product entries in L are the ones corresponding to the direct edges
between ai and bj , because in order to reach any other product that is not directly linked to a customer,
one would have to move through the directly linked products. These, however, always lie in the future set
of a customer and another product. The customer-product paths hence create Id non-zero entries in L.

Since we already know from Section 6.2 that the connections with µ create 2I + 1 entries, the only
part that is left to analyze are thus the connections between products and products. These are non-trivial,
because no customer is part of the future set of two products and therefore every customer can be used to
connect products. If we denote the number of possible non-zero entries from product-product paths with
nbb, we can just sum up the non-zero entries from the above calculations:

‖L‖0 = (2I + 1) + (I) + (Id) + nbb = I(3 + d) + 1 + nbb

For sparsity of L we need this to be of O(I), which is true if and only if nbb is of O(I) and d� I .

17

Please note that the abµ ordering is not necessarily optimal. It however provides a convenient framework
for determining explicit results, because one can focus on the product-product paths. As these paths will go
through customers, the Qab block is of predominant interest. In the following, we will focus on what we
introduced as Markovian and Problematic Design in Section 5, because they are both arrangements within
the framework of abµ ordering and we can make explicit statements about the sparsity of their Cholesky
factor.

6.3 Fill-In of Markovian Design
In this section we will derive the exact fill-in-ratio of the Markovian Design.

Theorem 6.4. The fill-in ratio of the Markovian Design is

fir =
I(3d+ 2)− (d− 1)(2d− 1) + 1

I(4 + d) + 1
(13)

Proof. Since the Markovian Design is a special case of abµ ordering we can use theorem 6.3 and just
calculate nbb, i.e. the number non-zero entries in L that result from paths starting and ending at products.
In the following we will count the product-product paths that cannot be blocked by the future set. Recall
that for any two products, no customer is in the respective future set. From the definition of Markovian
Design one then observes that every product is connected via one customer to 2(d−1) other (neighbouring)
products. In Figure 6 this is shown for product 12 (green) that is connected to its 4 neighbours (blue),
because they were rated by the same customer. Customer 12 could for example not reach product 9, because
therefore the path would have to go through either node 10 or node 11, which both lie in F (9, 12). Taking
into account also the diagonal entries, i.e. the links between a product and itself, these direct links thus
create d unique non-zero entries in L per product. This sums up to a total of I × d.

The only other paths between two products that cannot be blocked by the future set are paths to the last
d − 1 products (yellow in Figure 6): Since the future set of a product j and one of the last d − 1 products
does not involve products with labels smaller than j, these lower-labelled products can be used to move
until the last customer. The last customer, however, is directly linked to the last d − 1 products. In other
words, every product is also connected to the last d − 1 products through a path that cannot be blocked by
the future set. This can again best be seen from the exemplary node 12: In order to reach the last customer,
only products with labels lower than 12 are required and these do not lie in the future set of node 12 and one
of the last two products. These connections to the last products create additional I(d−1)− (2d−1)(d−1)
entries. The subtraction comes from the fact that some of these paths were already counted in the direct
links above. All product-product paths together sum up to I(2d− 1)− (d− 1)(2d− 1). Using theorem 6.3
this yields

nL = I(3d+ 2)− (d− 1)(2d− 1) + 1

This together with equation (6.1) allows to calculate the fill-in ratio as

fir =
I(3d+ 2)− (d− 1)(2d− 1) + 1

I(4 + d) + 1
(14)

Equation (14) is especially interesting, because for large I and fixed d, the fill-in ratio becomes constant,
i.e. (3d+2)/(4+d). This means that for this arrangement the Cholesky factor is sparse, because the number
of non-zeros is of the same order as the number of non-zeros inQ.

18

(a) Precision Matrix
(b) Graph with paths from product 12 that create non-
zero entries in L.

Figure 6: Precision matrix and conditional independence graph of Markovian Design. Neighbouring cus-
tomers have maximal overlap in their products.

6.4 Fill-In of Problematic Design
For the Problematic Design of Section 5.5 we will not derive the exact fill-in-ratio, but only a lower bound.
This, however, is enough to show that the Cholesky factor of L is possibly dense.

Theorem 6.5. The fill-in-ratio for the precision matrix Q with the Problematic Design of Section 5.5 is
O(I).

Proof. First note that the above theorem is equivalent to nL being of O(I2). For the proof, we will again
focus on the customer-product part Qab of the precision matrix and derive that the product-product inter-
actions create O(I2) entries in the Cholesky factor L. For this, we will use the equivalence of a path in
a graph and in the precision matrix that was explained in Section 4.3. In order to move from one node to
another we can move between non-zero entries along rows and columns in the precision matrix. Assume
that customers are labelled like a1, ..., aI and products are labelled like b1, ..., bI . Let i denote the index/row
of customers in Qab and j denote the index/column of the products in Qab. Note that in the full precision
matrix Q customer i would correspond to row/column i whereas product j would correspond to row/col-
umn j + I . Furthermore, define r(j) as the lowest customer-index that is directly linked to product j (see
orange dots in Figure 7). From the construction of the precision matrix (Algorithm 2) we can see that

j > r(j) if j ≥ 2

j = r(j) if j = 1
(15)

and furthermore
j − 1

d− 1
≤ r(j) ≤ j − 1

d− 1
+ 1. (16)

This can also be seen intuitively from the precision matrix in Figure 7. We will now show that from product
j there exists a path to every ′ ∈ {r(j), ..., j − 1} that cannot be blocked by the corresponding future set
and hence (j, j′) and (j′, j) ∈ fill(Q).

Every product j is linked to customer r(j) by definition. Customer r(j), however, is also linked to
product r(j) by construction ofQab (the diagonal is full). Product r(j) is again linked to customer r(r(j))
who is linked to product r(r(j)). Using equation (15) one notes that this procedure can be repeated until

19

product 1 is reached. In other words, from every product j one can reach the first product without using the
products indexed with Sj ≡ {r(j) + 1, ..., j − 1, j + 1, ..., I}. Now define

Tj ≡ {r(j), ..., j − 1}.

If we choose some j′ ∈ Tj we note that

F (j′, j) ⊆ Sj ∀ j′ ∈ Tj .

This means that there exists a path from product j to product 1 that does not contain edges in F (j′, j). We
however also note that we can reach product 1 from product j′ by the exact same procedure that we applied
for product j, i.e. by moving to product r(j′), then to product r(r(j′)) and so on. We also note that the path
from j′ to product 1 only involves products with indices smaller or equal to j′ (equation (15)), i.e. indices
that are not in F (j′, j). This means that for every j and j′ ∈ Tj there exists a path between product j and
product j′ through product 1 that cannot be blocked by F (j′, j). Hence, (j, j′) and (j′, j) ∈ fill(Q). An
illustration for the definition of r(j), Sj , Tj can be seen in Figure 7.

For every j, there are at least 2|Tj | = 2(j − r(j)) elements in fill(Q). We are thus interested in∑I
j=1(j − r(j)) which can be bounded by

I∑
j=1

j − r(j) ≤
I∑
j=1

[
j − j − 1

d− 1

]
by eq. (16)

≤
I∑
j=1

[
j(1− 1

d− 1
) +

1

d− 1

]

≤ (1− 1

d− 1
)

I∑
j=1

j

= (1− 1

d− 1
)
I(I + 1)

2
by Gaussian formula for sums

= O(I2) as I→∞

Consequently, the size of fill(Q) is O(I2) and the fill-in ratio is O(I).

7 Numerical Studies
In this section we will look at the performance of conventional R packages for our designs of interest. We
want to confirm the results derived in Section 6 and understand if one can improve algorithmic performance
by orderingQ appropriately. For the simulation of matrices from the 2-factor crossed-random effects model
all precision parameters were set to 1: τa = τb = τe = 1.

7.1 Spam and Matrix Packages
For the numerical computation of the Cholesky factor of matrices the two R-libraries Spam and Matrix were
used. While Matrix is a package with a wide range of methods for both sparse and dense matrices, Spam is
a set of sparse matrix functions for spatial statistics with special emphasis on Markov Chain Monte Carlo
type calculations within the framework of GMRFs (Furrer and Sain [2010]).

In Spam, the function chol can be used for the calculation of the Cholesky factor. It relies on a left-
looking block-sparse algorithm developed by Ng and Peyton [1991]. The base-algorithm creates blocks
by grouping columns with similar sparsity structure together and then efficiently calculates the non-zero
entries of L according to equation (2). In addition, one can choose to apply a permutation before running
the algorithm by setting a value for pivot. There are two built-in options: MMD is the default option and
applies the multiple minimum degree algorithm (George and Liu [1989]). The other option is the reverse

20

Figure 7: Qab for the Problematic Design. The orange dots mark the customer-product links with lowest
customer index for each product. The row index of these dots corresponds to r(j). An exemplary path from
product j = 17 to product 1 is shown. The columns marked red correspond to the set Sj and the columns
marked green to the set Tj . Note that for every product in Tj there exists a path to product j = 17 via
product 1 that cannot be blocked by the corresponding future set, because the future set will be a subset of
Sj .

Cuthill-McKee routine RCM, which tries to permute in order to make Q as banded as possible (11.1.5 in
Golub and van Loan [2013]). The user can also specify their own permutation by passing the corresponding
vector as pivot argument. Note that even though one might set pivot = FALSE, the base-algorithm for the
calculation of the Cholesky factor might still permute the input matrix since it tries to group similar columns
together. Throughout this numerical analysis it was however never observed that this base permutation had
an effect on the resulting fill-in. It seemed like it is more of a useful step for efficient computations that does
not effect the overall sparsity of L. Even though Matrix also comes with a sparse Cholesky routine, only
the dense formalism was used, since this ensures that no base-permutation is applied. Because the dense
formalism is computationally more expensive than Spams algorithms, it could however not be applied to all
cases of interest.

In order to assess the sparsity of L it is crucial to count the number of non-zero entries of a matrix
(sparse or dense). In sparse matrix packages, the non-zero entries are stored in a vector. It turns out that
Spam returns a vector of length nL, which supports the claim that nL is an appropriate quantity to monitor
when studying the computational cost of Cholesky factorization. In particular, the vector can contain zeros
at the positions where the package assumed a non-zero element that turned out to be zero after calculating
it, i.e. at numerical zeros. Matrix returns a matrix in dense format that does not allow to detect numerical
zeros. Only ‖L‖0 can be obtained. In other words, Matrix allows us to assess the true number of non-zero
elements in L and Spam the possible non-zeros implied by fill(Q).

7.2 Position of µ
First we check if the permutations provided by Spam are capable of understanding that for our setup µ
should always be put at the last position. In Figure 8 the fill-in ratio is shown as function of initial µ-
position for Markovian Design and I = 30, d = 4. For both the MMD and the RCM permutations the fill-in

21

is independent of the position of µ and fairly close to the pivot = FALSE option for the last positions.
In other words, both permutation algorithms understand that µ has to be put at a later position. The base-
algorithm, however, does not change the position of µ which leads to a highly increased fill-in if µ is put
at the first positions. For I = 30, d = 4 a fill-in-ratio of 8 means a full Cholesky factor. It can also be
seen that applying Spams pre-permutation is actually slightly worse than just leaving the initial Markovian
Design with µ at the last position. In Figure 9 the re-orderedQmatrix is shown. The permutations obtained
from the base- and the RCM algorithm lead to fairly similar matrices since they both seem to try to create
a banded matrix. The RCM algorithm, however, does not assign the highest possible label to µ, which is
the reason for the slightly higher fill-in ratio in Figure 8. Unsurprisingly, no algorithm preserves the abµ
ordering.

Figure 8: Fill-in-ratio with Spams pivot options for different positions of µ for Markovian Design.

7.3 Markovian Design
In Figure 10a the fill-in ratio obtained with the Spam routines as well as the one obtained with the dense
Matrix routine are shown for different values of I and constant d = 4 for Markovian Design. It is to note
that Spam does not find a permutation that leads to a lower fill-in-ratio than the one calculated explicitly

Figure 9: Ordering of Q obtained from RCM (left) and MMD (middle) and the Spam base algorithm for
Markovian Design.

22

(a) Unpermuted Qab (b) Permuted Qab

Figure 10: Fill-in-ratio of Markovian Design with Spams pivot options for unpermuted and permuted Qab

matrix. Bars indicate minimum and maximum values. In the permuted case only MMD is capable of
recovering a constant fill-in ratio.

(see equation (14)). It is also to note that Spams base-algorithm performs best and returns the exact fill-in
ratio that was obtained analytically. The default permutation, MMD, leads to a slightly increased fill-in and
the RCM permutation yields a fill-in that is very close to the one of the base-algorithm. Most importantly,
the fill-in ratio remains constant for large I for all Spam routines, which is the crucial part for efficient
calculation of L. What calls the attention is that the fill-in ratio for dense matrices is significantly lower
than the one obtained from Spam for large I . As explained, this means that the true number of non-
zero values is much lower than the one anticipated by Spam. These zero-values, however, are not typical
numerical zeros in the sense that Qij ≈

∑
k LikLjk. This was seen by adding random noise to all entries

of the precision matrix. Since the number of observed zeros remained the same, we concluded that these
non-zero values cannot be due to conventional numerical cancellation, but they are rather the result of weak
dependence. In fact, all these zeros are at positions that correspond to product-product paths involving the
last d − 1 products. Recall that many products are only connected to the last products through many other
products of lower label and many customers, i.e. through many other nodes. The reason for these values
being so small is thus that the division from equation (2) is applied many times which leads to values that
are so small that they become numerically zero. A confirmation for this can be seen in Figure 11, where
on the left the absolute value of the entries of the Cholesky factor corresponding to paths between products
and the last product are shown for I = 30, d = 4. Since products 1,2,3,27,28,29 are connected through
one customer only, their corresponding entry is large. For products with label > 3 the absolute value of
the entry in the Cholesky seems to decay exponentially with product index. On the right of Figure 11 one
can see the number of numerical zeros as a function of I for different values of d, which for large enough
I seems to be linear. Since also the number of non-zero values in L grows linearly in I , the computational
cost of calculating these values is possibly non-negligible. Furthermore, there are not only these values that
are stored as exact numerical zeros, but there is also a big number of very small entries in L. One could
possibly obtain a ’good enough’ approximation of the Cholesky factor by sparing to compute these values.
This relates directly to approximate Cholesky computations and will be elaborated further in Section 9.

In order to find out if the initial arrangement of the Markovian Design is preferable over other orderings
of the same class a permutation was applied. The permutation was performed such that the abµ block
structure of the customers and products remained, i.e. customers were only permuted with other customers
and products only with other products. This leads to the Qab block not being anti-diagonal any more,
whereas all other blocks keep their structure. The result of the performance of the different Spam routines
on the permuted Markovian Design can be seen in Figure 10b, where average fill-in ratios for 25 random
permutations of the Markovian Design are shown. The bars indicate min/max values. Only MMD is capable
of recovering a ordering such that the fill-in ratio is equal to the one it obtained in the non-permuted case

23

(a) Absolute values of entries in L (b) Number of Numerical zeros

Figure 11: a): Absolute value of last product row of L for I = 30, d = 4, i.e. L2I,(I+1):2I . These entries
correspond to paths between products and the last product. The diagonal entry is not shown.
b): Number of numerical zeros as a function of I for different values of d.

(which in particular is constant for large I). RCM performs surprisingly bad and is hardly able to improve
the fill-in compared to the base-algorithm. Even though it cannot be confirmed that the fill-in obtained from
RCM is in fact increasing linearly with I , it is obvious that there are permutations of the Markovian Design
leading to increased fill-in. In other words, for all what we observed, the Markovian Design was optimal
for its class of graphs.

7.4 Problematic Design

(a) Fill-in-ratio with Spam permutations.
(b) Reordered Q matrix for Spams MMD algorithm for
I = 25, d = 4.

Figure 12: Problematic Design

The performance of the Spam routines on the Problematic Design introduced in Section 6.4 is shown
in Figure 12a. The fill-in ratio grows linearly in I if one applies the RCM routine or decides not to pre-
permute. In particular, the fact that the base-algorithm leads to a fill-in ratio that scales linearly in I can
be seen as a confirmation of the result derived in Section 6.4. Even though MMD performs significantly

24

better than the other routines, the fill-in ratio still increases linearly in I , but with a much smaller slope.
Nevertheless it is interesting to look at the permutation obtained from MMD since it provides by far the best
results. In Figure 12b the re-orderedQ matrix can be seen. Even though it has to be taken into account that
this ordering also includes the permutations applied by the base-algorithm, it is to note that the resulting
matrix looks fairly similar to the abµ ordering. In particular, µ is at the last position and there is a quadratic
block with only diagonal elements on the lower right part. The Cholesky factorization of the Problematic
Design created no exact numerical zeros. However, it was found that a big fraction of the entries in L are
very small. For I = 5000, d = 4 for example approximately 98.5% of the entries are smaller than 10−4 in
absolute value.

7.5 Erdös-Renyi
Finally, the performance of the Spam routines on the Erdös-Renyi design was investigated. The resulting
average fill-in ratios are shown in Figure 13. Min/Max values are indicated with bars, but deviate so little
from the average value that they can be barely noticed. Again, the fill-in ratio grows linearly in I for all
methods and MMD outperforms the other methods. It is interesting to see that the fill-in ratio obtained from
RCM is significantly larger than the one from the base-algorithm. In the Erdös-Renyi design, apart from
d-regularity in expectation, no structure on the connections between customers and products is assumed,
making it a very relevant design for realistic 2-factor crossed random effects models. However, all methods
lead to a dense Choleksy factor, which indicates that it might be hard or even impossible to find a general
ordering that yields a sparse L. For the Erdös-Renyi design no numerical zeros were found in the Cholesky
factor. However, for for a matrix with I = 5000, d = 4 more than 90% of all entries are smaller than 10−4

in absolute value.

Figure 13: Fill-in ratio for Erdös-Renyi design.

8 Summary
In this thesis we focused on analyzing 2-factor crossed random effects models and their scalability for
inference. We showed that the computational bottleneck for MCMC based methods is the calculation of the
Cholesky factor and introduced methods for the calculation of L in the case of sparsity. We in particular
showed that the crucial part for efficient calculation is the sparsity structure of L itself. We expressed
the computational cost through the number of 3-cycles in the fill-graph of the precision matrix and proved
upper and lower bounds. We then introduced graphical models in order to assess conditions for sparsity that
can be derived with probabilistic arguments. In particular, we found that reordering the precision matrix
can increase the sparsity of the Cholesky factor crucially. We introduced the Markovian Design and the
Problematic Design as 2 exemplary designs for which we showed sparsity and density of the Cholesky

25

factor, respectively. We then numerically analyzed the performance of the Spam package on these designs
and the Erdös-Renyi design. We found indications that in general it might be hard or even impossible to
find a generic rule for ordering the precision matrix of 2-factor crossed random effects models such that
the respective Cholesky factor is sparse. We however also found that possibly a big part of the non-zero
entries in L is small in absolute value. In the presentation of possible future work in Section 9 we perform
preliminary experiments indicating that neglecting those small values might only lead to negligible changes
in the Cholesky factor (according to the Frobenius norm, which we consider as a metric). For the Markovian
Design we could connect the appearence of zero and close-to-zero entries to the notion of weak dependence.

9 Future Work

9.1 Approximate Cholesky Methods
Since the numerical studies showed that a big fraction of the entries in L is either exactly zero or close to
zero, this opens the door for approximate Cholesky methods. If at the price of a small error in Q one can
spare to calculate these values, computational cost might be reduced greatly. It is therefore crucial to find out
how many small values should be expected and whether their position can be estimated with probabilistic
arguments. In Figure 14 the relative error which corresponds to neglecting a certain fraction of small values
can be seen. For a given Q matrix the cholesky factor was computed. Then, a certain fraction of small
entries (in absolute value) was set to zero in L and Q was reconstructed from this simplified Cholesky
factor. The relative change in the Frobenius norm of Q then serves as a measure of the price one has to
pay for the approximation. It can be seen that if one allows a relative error of 10−6, for I = 5000 about
99% of the values in L can be neglected. It is also to note that the fraction of negligible values increases
with I for a fixed relative error. Consequently, allowing a small error might not only decrease the number
of elements that have to be computed by a prefactor, but also change how they scale with I . Future work
should therefore include research on how the proportion of negligible values scales exactly with I and d
and to which extent this can be used for improving the computational cost of the Cholesky factorization for
different designs.

Figure 14: Problematic Design, d=4: Proportion of Values than can be neglected as a function of the
resulting relative error in the Frobenius norm.

9.2 Exploration of Full Cost for MCMC Algorithm
In this thesis we investigated the computational cost of computing the Cholesky factor of a precision matrix,
which is a crucial step for sampling from a normal distribution. For MCMC algorithms however, one also

26

has take into account that the parameters and hyperparameters of the model have to be updated regularly.
We believe that this can be done efficiently, but nevertheless it should be confirmed how a fully costed
MCMC algorithm works out for the case of 2-factor crossed random effects models.

9.3 Simulation of Balanced Random Designs
Since in this thesis only random graphs that were d-regular in expectation (i.e. Erdös-Renyi graphs) were
investigated, another possible step in the analysis of 2-factor crossed random effects models is the investiga-
tion of random graphs that are exactly balanced. We therefore propose a modification of the configuration
model as a method that can be used for drawing samples from a d-regular graph: We create two vectors of
indices, where each vector corresponds to one factor. Each vector then contains every index d times. For
d = 3 we thus have

aind = {1, 1, 1, 2, 2, 2, ..., I, I, I}
bind = {1, 1, 1, 2, 2, 2..., I, I, I}

We then shuffle bind and place an edge between nodes aind[i], bind[i] for every i. The resulting graph is
not necessarily d-regular, as some links might appear twice. We therefore reject every non-d-regular graph
and shuffle again until we get the first d-regular one, which we accept. One can show that for large I the
probability of having no double edges becomes independent of I and decreases exponentially with d. This
implies that this form of rejection sampling is only feasible for small d, which is typically the case for
crossed random effects models.

Appendices
A Detailed Calculation ofQ
Like in Section 5.1 we start by applying Bayes theorem to the 2-factor crossed random effects model:

p(β|y) =

=
p(y|β)p(β)

p(y)

∝ p(y|β)p(β)

= p(β)
∏
i,j

p(yij |µ, ai, bj)

=

I∏
i=1

J∏
j=1

p(µ)p(ai)p(bj)p(εij)

= exp(−1

2

∑
i

a2i τa) exp(−1

2

∑
j

b2jτb) exp(−1

2

∑
i,j

(yij − µ− ai − bj)2τe)

∝ exp

−1

2
τa
∑
i

a2i −
1

2
τb
∑
j

b2j −
1

2
τe
∑
i,j

(µ2 + a2i + b2j + 2µ(ai + bj) + 2aibj

= exp

−1

2
(τa + τeni:)

∑
i

a2i −
1

2
(τb + τen:j)

∑
j

b2j −
1

2
τeNµ

2 − τeµ

∑
i

aini: +
∑
j

bjn:j

− τe∑
i,j

aibj

∝ exp

(
βTQβ

)
where nij = 1(i,j)∈S is 1 if we have an observation for ai and bj and 0 else. N =

∑
i,j nij is the total

number of observations, ni: =
∑
j nij the number of times ai was observed and n:j =

∑
i nij the number

27

of times bj was observed. The entries of the precision matrixQ for β|y can then be read off:

Qµµ|y = Nτe

Qµai = ni:τe

Qµbj = n:jτe

Qaiai = τa + τeni:

Qbjbj = τb + τen:j

Qaibj = τe

(17)

where i ∈ (1, ..., I) and j ∈ (1, ..., J).

28

References
Reinhard Furrer and Stephan R. Sain. spam: A sparse matrix R package with emphasis on MCMC

methods for Gaussian Markov random fields. Journal of Statistical Software, 36(10):1–25, 2010. doi:
10.18637/jss.v036.i10. URL http://www.jstatsoft.org/v36/i10/.

Alan George and Joseph W. H. Liu. The evolution of the minimum degree ordering algorithm. SIAM
Review, 31, 1989. URL http://www.jstor.org/stable/2030845.

John R. Gilbert. Predicting structure in sparse matrix computations. SIAM Journal on Ma-
trix Analysis and Applications, 15(1):62–79, 1994. doi: 10.1137/S0895479887139455. URL
https://doi.org/10.1137/S0895479887139455.

Gene H. Golub and Charles F. van Loan. Matrix Computations. Johns Hopkins University Press, Baltimore,
2013.

Esmond G. Ng and Barry W. Peyton. Block sparse cholesky algorithms on advanced uniprocessor comput-
ers. Mathematical Sciences Section, Oak Ridge National Laboratory, 1991.

O Papaspiliopoulos, G O Roberts, and G Zanella. Scalable inference for crossed random effects mod-
els. Biometrika, 107(1):25–40, 11 2019. ISSN 0006-3444. doi: 10.1093/biomet/asz058. URL
https://doi.org/10.1093/biomet/asz058.

Igor Rivin. Counting cycles and finite dimensional lp norms. Advances in Applied Mathematics, 29
(4):647 – 662, 2002. ISSN 0196-8858. doi: https://doi.org/10.1016/S0196-8858(02)00037-4. URL
http://www.sciencedirect.com/science/article/pii/S0196885802000374.

Håvard Rue and Leonhard Held. Gaussian Markov Random Fields. Chapman Hall/CRC, Florida, 2004.

29

