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Abstract

In this thesis project I analyse labour flow networks, considering both undirected
and directed configurations, and company control networks in the UK. I observe that
these networks exhibit characteristics that are typical of empirical networks, such
as heavy-tailed degree distribution, strong, naturally emerging communities with
geo-industrial clustering and high assortativity. I also document that distinguishing
between the type of investors of firms can help to better understand their degree
centrality in the company control network and that large institutional entities having
significant and exclusive control in a firm seem to be responsible for emerging hubs in
this network. I also devise a simple network formation model to study the underlying
causal processes in this company control network. I perform numerical simulations,
sensitivity analysis and model parameter calibration, obtaining a set of parameters
for the model with which it can approximate reasonably well the empirically observed
patterns in the data.
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I Introduction

In this project one of the main interests is in exploring the labour market from a net-
work science perspective, since it can provide a more granular understanding of the
dynamics of labour flows between specific companies, industries or regions. Also,
this approach allows for modelling these dynamical processes with heterogeneous
agents, which is of interest in economic modelling. Understanding the dynamics of
these labour flows can also help in predicting the propagation of shocks through
the labour market, which is especially relevant in today’s world, disrupted by the
COVID-19 pandemic. It is even more relevant for the country of interest, the UK,
since it is also facing the EU-exit at the end of 2020, which most probably will gener-
ate an additional shock to the UK’s labour market. Labour flows are also useful for
understanding how quickly these shocks might spread through the network and thus
help to predict unemployment trajectories. However, in more general terms labour
flows offer a practical monitoring tool to follow “skill-paths” in an economy. The un-
covered “skill-paths” could help to identify potential for productivity gains in certain
sectors, occupations or regions. These examples show that analysing labour flows
could provide crucial insights for policy-makers when designing interventions in case
of labour market shocks or when implementing retraining programmes to increase
productivity. Combined with other techniques like agent-based modelling, labour
flow models could serve as counterfactuals to evaluate these policy interventions.

I also analyse company control data, which can help to identify the interconnect-
edness of firms through their owner structure. These ownership structures might
also be related to labour flows between the companies. Community structure and
node centrality in such company control networks is of primary interest, because
they are closely related to the influence that certain agents might have in the re-
lated economic interactions. Since the ownership structure and investor composition
of a firm could have significant impact on its future growth prospects, the analy-
sis of such company control networks could have several real-world applications in
supporting firms to optimise their ownership structure.

To provide a thorough account of the structure and dynamics of these economic
networks first of all a detailed analysis of their empirical characteristics is needed
with the appropriate scientific tools. Degree distributions, community structures
and dynamical processes of these networks need to be understood. Then these
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empirical observations should be explained by causal models in order to be able to
design better mechanisms for the functioning of these economic networks.

This thesis document evolves as follows: in the later parts of the current sec-
tion I the relevant literature is reviewed, then I elaborate on the special aspects of
analysing data on officers and investors. In the beginning of section II the data
collection method is introduced, then some descriptive statistics are provided re-
garding the labour flow networks, the company control network and other company
characteristics and then I proceed to a more detailed network analysis. Finally in
section II.4 the results of the empirical analysis are summarised. In section III.1 the
main empirical observations and stylized facts of the network analysis are discussed
again and highlighted. Then in the subsequent parts of section III a theoretical
model is devised with the goal of being able to explain the empirical results based
on microeconomic first principles. Finally, I conclude in section IV with the main
results of the project.

I.1 Literature review

Labour flow networks

The term labour flow network is introduced in (Guerrero & Axtell, 2013) as a
network analysis approach to understand the heterogeneous dynamics and frictions
of labour markets. It is a well-suited computational and network science method-
ology to inform labour market policies. The building blocks for such a network are
the employee-employer matched records, which represent the employment histories
of workers. These type of matched records are usually available at statistical agen-
cies or bureaus in every country and can be used to empirically test the validity of,
or estimate certain parameters of the labour flow networks. Such analysis is done
in (Axtell et al., 2019) for the universe of workers in Finland, along with comparing
it to the predictions of an economic model. That paper shows that frictions in the
network create correlation in the hiring behaviour of firms and that the aggregate
unemployment depends strongly on the labour flow network topology. Also utilising
the empirical employee-employer matched records from Finland, the authors show
in (Guerrero & Lopez, 2015) that aggregate matching function models cannot ex-
plain the empirically observed labour flows, which further strengthens the view that
the alternative, network science methodology might be more suitable to account
for the labour market frictions and flows. Furthermore, the labour flow network
methodology can help policy-makers to use more realistic assumptions and models
for their decision-making, since as discussed in (Guerrero & Lopez, 2017), simula-
tions show that classical models tend to underestimate the unemployment effect of
certain shocks to the economy, whereas network-based models could more accurately
capture the patterns of shock dissipation through labour markets.

Job search on networks

There are of course other approaches to accommodate networks in labour mar-
kets and an important such idea is the referral-based job search networks. Testable
implications of such models are derived in (Dustmann et al., 2016) and tested on
unique empirical employee-employer matched records. The authors find suggestive
evidence that workers earn higher wages and are less likely to leave their firms if
they obtained the job through referrals. These effects decline with tenure at the
firm, which suggests that referral-based job networks help firms to learn about skills

7



Structure and power dynamics in economic networks Aron Pap

of the workers and contribute to productivity gains in the labour market. A simi-
lar approach is taken in (Glitz, 2017), where coworker networks in labour markets
are analysed with empirical data for Germany. Using the exogenous variation due
to massive lay-offs, the author finds that the employment rate of a worker’s former
coworkers has significant effect on his/her re-employment likelihood after the lay-off.
This result also shows the strong effects of networks for employment/unemployment.
In an even more recent study (Glitz & Vejlin, 2019), the authors show again that
coworker referrals play a substantial role in the job search process and they also
perform counterfactual simulations which provide some evidence that wages and
productivity would decrease without these referral markets due to information defi-
ciencies and less efficient learning about the characteristics of agents.

Community detection in networks
One of the aims of the current study is to explore the community structure of

the labour flow and company control network in the UK, therefore the literature
of community detection in networks is studied extensively here. A comprehensive
survey on community detection algorithms can be found in (Fortunato, 2010). For
theoretical purposes, several algorithms were considered, however due to practical
matters and computational constraints, finally the emphasis is given to efficient
methods that also work on large networks like the labour flow and company con-
trol networks. Probably the most well-known and commonly used such method is
the Louvain-method, introduced in (Blondel et al., 2008). This heuristic method is
based on modularity maximization. This is an agglomerative method which starts
from isolated nodes and then merges them into communities if that increases the
modularity1. Then in the next iteration of the algorithm the newly-formed com-
munities are considered as nodes in a new, induced network and then the same
steps can be applied at that “higher-level” as well. One of the main reason for the
algorithm’s computational efficiency is that the change in the modularity due to a
“merging step” can be easily computed as:
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in +ki,in
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−
(∑
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where
∑

in is the sum of the weights of the links inside the current community,
∑

tot

is the sum of the weights of all links of nodes in the current community, ki is the
sum of the weights of the links of node i (its degree), ki,in is the sum of the weights
of links between node i and the nodes in the current community and m is the sum of
all the link weights in the network. A similar expression can be used when consid-
ering node removal from a certain community as well. The authors then apply their
algorithm for a Belgian mobile phone network with French- and Dutch-speaking
nodes. The quality of the community detection (measured by modularity) is high
compared to other methods on different benchmark datasets and the computational
time of the Louvain-method clearly outperforms the other considered algorithms.
The Louvain-method works for undirected and potentially weighted networks, but
it is not directly applicable to directed networks. Some of the configurations that
I am going to study are directed, therefore I am interested in community detection

1Modularity measures the difference of the link density of the community from what this link
density would be in case of a randomly rewired network. If modularity is high, that means there
is a dense subgraph, which is unlikely to emerge if there would be no community structure in the
network.
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algorithms for directed networks as well. Several modifications are proposed for the
Louvain-method, some of which also make it applicable to directed networks. One
such example is the Leiden-method (Traag et al., 2019), which I utilise for the di-
rected network analysis. An insightful empirical example for community detection
in labour flow networks is in (Park et al., 2019), which is closely related to what I
aim to do in this project as well. The authors in that paper use LinkedIn data with
the employment history of more than 500 million users over 25 years, together with
4 million firms globally. They use the Louvain-method for community detection in
the network, which reveals hierarchical structure and strong geo-industrial cluster-
ing. They also find suggestive evidence that labour inflows to these geo-industrial
clusters are linked to the growth (measured by market capitalization trend) of these
clusters and the relationship is stronger than if one uses traditional, administrative
aggregation units. These results provide useful benchmarks for my current work on
labour flow networks as well.

Scale-free networks

Empirically observed networks seem to have some common characteristics, which
might be due to some universal underlying organising principle, which was first doc-
umented in (Albert & Barabási, 2002), a highly influential paper in network science.
One of the main observations is that empirical networks tend to have power-law
degree distribution (that is: P(d) ∝ d−γ, where d is the degree of a node and γ is
the exponent of the degree distribution). The labour flow and company control net-
works also have heavy-tailed degree distributions, therefore the results from (Albert
& Barabási, 2002) seem important, especially their preferential attachment model,
since some variation of that could be present in both labour flow networks, but even
more in company control networks. A detailed overview of power-laws in networks
is given in (Clauset et al., 2009) as well and the authors also provide derivations for
a maximum-likelihood estimation method for the exponent of the degree distribu-
tion, which I use in order to fit power-law functional forms to the empirical degree
distributions of labour flow and company control networks.

Network formation models

Network science is an empirical discipline of science by definition (as it was its
main distinguishing factor from graph theory in the early days). However after
observing some interesting and useful empirical results, it is a natural next step
in understanding, to try to come up with models which can reproduce the results
documented in practice. Network formation models are part of this scheme, however
as network science is a highly multidisciplinary field, there are several approaches
for devising generative models, mainly stemming from physics and economics. In
this literature review section I focus on the economics-related network formation
models (as it is more relevant for the current work), nevertheless keeping in mind
that these have some overlap with the physics generative models as well.

A comprehensive survey paper on stochastic network formation models is by
(Pin & Rogers, 2016). In this paper the authors survey one-shot models with a fixed
population, growing random network models, dynamical models with a fixed/steady-
state population and they also extensively investigate the economic literature on
homophily. For my purposes, the surveyed growing random network models and the
dynamical models are most useful. But for a particular application one might need
a combination of the characteristics of the introduced models, there is no universal
recipe. However, the authors do provide a general framework to keep in mind when
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constructing network formation models, which also turns out to be useful for this
project:

• An understanding of the properties of random formation processes

• A set of theoretical frameworks with which to model the incentives of agents
and understand their optimal behavior

• Empirical work that identifies the relevant characteristics of agents and their
environments, to better understand their decisions

• Structural work to estimate the resulting models

Another highly influential paper is (Bala & Goyal, 2000), in which the authors in-
troduce noncooperative models of social/economic network formation, where agents
have some specific costs and some potential benefits from establishing links. They
derive the architecture of equilibrium networks in these models and they also anal-
yse the social efficiency of these equilibria. Certain aspects of these models inspired
my work as well, since in my network formation models there are some steps which
are noncooperative (e.g. when an investor sells his/her stake in a given company),
but this model also has cooperative elements, when decisions are based on mutual
agreement (e.g. when an investor acquires significant control in a given company).

A recent survey paper on the econometric models of network formation is (de
Paula, 2019). The author also starts off with discussing random graph models,
detailing the general class of exponential random graph models. Then dyadic models
are introduced, where the formation of links is usually a Bernoulli trial, whose mean
is dependent on node characteristics. For instance, in the formulation of (Dzemski,
2018) from the mentioned survey paper:

Gi,j = 1(XT
ijβ+α

out
i +αinj +εij>0)

where G is the adjacency matrix, X is the matrix of dyadic covariates, 1 is the
indicator function and ε ∼ N (0, 1). It turns out that parameter estimations in these
settings can be carried out using tools from panel econometrics. The performance
of estimations is usually tested with simulations and empirical applications. One of
the main improvements was the introduction of “tetrad logit”, which offers a condi-
tional maximum likelihood estimator. Influential models building on the assumption
of pairwise stability are also introduced, as well as incompatible/incomplete mod-
els and subgraph generation models. Strategic network formation models are also
prominent in the literature and well-established through game theory principles.
For iterative strategic network formation models, Bayesian estimation techniques
are used with a Markov Chain Monte Carlo procedure and empirically tested on
the AddHealth benchmark dataset. All in all, this survey paper is an important
reference point for my project and for my final network formation model, since that
involves both random and strategic elements from the more simple models discussed
here as well, nevertheless building on robust microeconomic principles.

Company control networks
Since I have data on the control structure of firms in the UK, I am also interested

in this literature. In (Battiston & Catanzaro, 2004) the authors analyse the statisti-
cal properties of corporate board and director networks with empirical data from the
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US and Italy. They find several similarities across the different countries and also
persistent characteristics over time. The main observations are that these networks
are “small-world” (small average shortest path, surprisingly small diameter), assor-
tative, highly clustered and have giant maximal connected components. Moreover,
the degree distribution seems to follow a power-law here as well (considering the
one-mode projection of the original bipartite network). These results are aligned
with my findings for the UK, except for the giant component, but this is proba-
bly due to the fact that here the authors only analyse sufficiently large companies,
whereas my analysis also includes small enterprises.

In (Battiston, 2004) the authors analyse further company control networks, but
now focusing on the topologies of shareholding networks, which introduce “inter-
pretable” weights to the networks. Two new metrics are introduced to compactly
represent some characteristics of these networks, these are the number of effective
shareholders of a stock and the number of companies effectively controlled
by a single holder. These quantities are insightful for me, since I derive similar
quantities for the company control network. The empirical analysis with American
and Italian data reveals interesting inner structure of these capital control networks,
but also substantial difference between the US and Italy. The Italian market can
be partitioned into several separated groups of interest, whereas the US markets is
characterised by very large holders sharing control on overlapping subsets of stocks.

Then in (Vitali et al., 2011) the authors extend the analysis to the global level
and they investigate the architecture of the international ownership network, along
with computing the control held by each global player. The paper finds that a
significant share of control flows to a small, strongly-connected core of financial
institutions. These results are interesting for my work as well, since some of the
financial institutions highlighted in the paper (e.g. Lloyds Plc.) are also found to be
important for the UK control network and these strong players can also help their
holdings to become more “central” in the company projection network.

Finally in (Battiston et al., 2003) the authors go one step further and they anal-
yse the decision-making dynamics of these board of directors, focusing on how the
topology of the projections of the original bipartite control graph affects the decision
making dynamics. They derive some indirect network characteristics which turn out
to be good predictors for the outcomes of dynamic decision-making processes (apply-
ing it to empirical data from the US). This is an illuminating result from my point of
view, since it provides another real-world example when some non-trivial quantities
of networks can substantially enhance the understanding of a social phenomenon.

I.2 Special considerations for officers and investors

As it is highlighted throughout the literature review, there is significant work done
for labour flow networks in general and also for networks of board of directors. There
are important conclusions to be drawn from these results, which can inform my cur-
rent work as well. However it needs to be taken into consideration that my empirical
data is unique. It is unique in the sense that I only have employment history and
thus labour flow data for officers of companies and not workers in general. One could
argue that officers have more expertise in one particular industrial area and there-
fore less likely to change industries than the general population of workers. On the
other hand, one could also argue that officers have such general management skills,
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which can be useful across all industries, therefore they should be more likely to
change industries. A similar dilemma arises when thinking about regional mobility,
since officers might have really strong social ties in a particular geographical area,
while they might also have more financial resources in order to take the decision
of relocation if a better job offer is presented to them. These examples indicate
the strong limitations to how the empirical results of this analysis might reflect the
general population of workers.

Regarding the data that I collect on the company control network, there are also
significant limitations there, since I get the list of all legal persons with significant
control in a given company, however I do not have access to their quantified share
or stake in the company, therefore all the related empirical analysis has a “discrete”
nature instead of the continuous shareholding observations presented in (Battiston,
2004), for example.

With these considerations in mind, the exploration of structure and power dy-
namics in economic networks might begin.

II Empirical Analysis

First of all a clear definition is needed for some of the “agents” whose actions and
activities correspond to the observations in the data. Officer of a firm here means
any employee or stakeholder, who has significant role in the management of the firm,
such as directors or secretaries. Persons with significant control are natural per-
sons or legal entities that have significant financial or decision-making influence in
the company (for instance owning 50 percent of the company’s shares). Using the
previous definitions I can now define the objects of interest, the labour flow net-
work and the company control network. For the labour flow network (denoted
by LFN from now onwards), I consider and analyse 2 versions, an undirected version
and a directed version.

Undirected LFN: A weighted network where each node is a company, which
appeared in the employment histories of the officers at least once and an edge is
created between two companies A and B if:

• An officer started working at company B after leaving company A, with no
other employment inbetween (and vice versa)

• An officer started working at company B while working for company A (and
vice versa)

If there is already an edge between A and B and there is a new “link forming”
observation, then the weight of the edge between A and B is increased by 1.

Directed LFN: A weighted network where each node is a company, which
appeared in the employment histories of the officers at least once and an edge is
created between 2 companies A and B if an officer started working at company B
at most M months (M = 2 in the current implementation) after leaving company
A, with no other employment inbetween.

If there is already an edge between A and B and there is a new ”link forming”
observation, then the weight of the edge between A and B is increased by 1.

A small example to illustrate how these networks would be constructed from
empirical data is shown on figure 1. Both the undirected and the directed LFN-s
are shown for three cases, with one, two or three officer observations subsequently.
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Figure 1: Example labour flow networks based on employment history observations

Company control network: A weighted, undirected network which is con-
structed from the bipartite graph of company control observations, using its one-
mode projection onto the companies. There is a link between company A and B in
this projection network, if there is at least one legal person with significant control
in both companies and the weight of the link is the number of such legal persons
with significant control in both companies. The legal persons can either be natural
legal persons (any people who invest in the company), or institutional legal persons
such as other firms or other organizations (e.g. charities, associations). Signifi-
cant control means that the legal person has significant financial or decision-making
influence in the company (for instance owning 50 percent of the company’s shares).

An example to illustrate how the one-mode projection is done is shown on figure
2, where the Company projection network is the final object of interest.

Original bipartite
network

Company projection 
network

Legal person
projection network

Legal persons with significant control

Companies

1
A

B

C

2

3

4

5

1
2

3
4

5

A

B C

Figure 2: Example of the company control network, a projection of the bipartite
control network
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There could be other ways to define these networks, but for the questions that this
project investigates, the definitions presented above seemed to be most practical and
insightful. Also, it might not be immediately clear why it is useful to analyse both
the directed and the undirected network as different objects. However, the subtle
differences between these approaches might bring interesting conclusions, since the
directed network is expected to be closer to the “general” labour flow networks
in terms of characteristics, whereas the undirected version is expected to be more
specific to officers. The reason for this is that most of the workers usually only
have one job at a time and they only move to another company after (or while)
leaving their previous employer. The definition for a link in the directed labour
flow network captures exactly this type of patterns. On the other hand, officers
are more likely to have several positions at the same time, serving as directors or
board members of different companies. Then it is reasonable to argue that there
should be connection between the companies co-directed by the same person. Since
for example this person will know about vacancies at both firms and will also know
about employees looking for a career shift in both firms, therefore this person could
act as a “facilitator” for a potential labour flow between the two companies. These
kind of connections are only captured by the undirected labour flow network. Thus
the undirected labour flow network might explain the special characteristics of the
labour market from the officers’ perspective, while the directed labour flow network
might provide more insight into how average workers move through the job market.

II.1 Data collection

For this project I utilise the CompaniesHouse database2 in novel ways. First of all,
I use their API service to get data on general company information (e.g. unique
company number, date of creation, industry by Standard Industrial Classification
code, region of headquarters, insolvency indicator, indicator whether the company is
active or not and company legal type variables) and also to get data about the legal
persons with significant control in each company. To extend these data sources,
I also implement a web scraper in Python to be able to collect the employment
history of each listed officer of the firms on the CompaniesHouse database. The web
scraper and the API collection script is constructed in such a way to respect the
rate limiting rules of the CompaniesHouse. All the data collection procedures were
conducted through Amazon Web Services, using EC2 instances as virtual machines.

Since the rate limiting of the service provider and the large amount of available
data on CompaniesHouse prevent users from being able to collect all the data,
I also have to choose a sampling procedure. Due to practical considerations, a
snowballing-type of sampling procedure is chosen, since I start with collecting data
on some randomly chosen companies, but in the next round, I consider companies
which had direct connections to the firms of the previous round, in terms of labour
flows of officers between those companies. This also means that the procedure would
stop once it hits the “boundaries” of a connected component in the officers’ labour
flow network. In such case, the data sampling algorithm would randomly choose a
new company to explore from the list of currently still unexplored firms and then
the snowballing-procedure would continue.

2An executive governmental agency in the UK, registering company information and making it
available to the public.
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Note that this sampling design might introduce some bias to the results3, but
since there is still a significant portion of UK companies not listed on the Com-
paniesHouse database, the results would not be representative of the whole UK
economy, even if all the data from the CompaniesHouse could be collected. The
random restarts in the sampling design can help to explore a huge variety of the
“space of companies” in the UK, but still being able to get a detailed view of inter-
connections between and within neighbourhood of companies due to the snowballing
procedure.

II.2 Descriptive statistics

In table 1 some descriptive statistics about the analysed networks are provided.
Note that in case of the directed LFN, X/Y refers to in- and out- quantities respec-
tively and the number of components measures the number of weakly connected
components. Also note that the reported degree assortativity for the directed LFN
is the average of the values for all in-out combination. For fitting degree exponents
to the degree sequences a power-law functional form is assumed4 and the maximum
likelihood estimates are reported here (the technical derivation for this estimation
is provided in the Appendix A), following the equations from (Clauset et al., 2009).
Also note that the reported summary statistics refer to the analysed networks after
removing isolates (nodes that are not connected to anyone5). For example, initially
the number of nodes in the undirected and directed labour flow networks is the
same, but due to the different definition of link creation in the two networks, more
nodes will be isolates in the directed labour flow network and that is the reason why
these networks differ in these fundamental characteristics as well.

Col.: Networks
Row: Characteris-
tics

Company con-
trol network
(undirected,
weighted)

Labour flow
network
(undirected,
weighted)

Labour flow
network
(directed,
weighted)

Number of nodes 78,844 175,501 57,027
Number of edges 463,536 2,375,811 48,666
Number of components 15,280 68 11,088
Size of giant component 1285 174,060 26,649
Max edge weight 24 20 7
Average degree 11.76 27.07 0.85/0.85
Fitted degree exponent (γ) 1.60 1.36 7.46/5.39
Degree assortativity 0.93 0.35 0.09
Regional assortativity 0.64 0.39 0.2
Industrial assortativity 0.33 - 0.12

Table 1: Summary statistics and general characteristics of the studied networks

3For example the average degree might be overestimated this way, since when the next company
to consider is chosen during the snowballing procedure and not the random restart, then high degree
firms are more likely to be chosen than firms with a low degree.

4The minimum degree is set equal to 1, instead of optimizing that parameter of the distribution
as well, as some authors do.

5Neither in- nor outgoing links in case of the directed network.
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Also note that the - symbol in table 1 represents that the corresponding value
could not be calculated due to its computational cost (industrial assortativity for the
undirected labour flow network). Based on the values in table 1 and also based on
the goodness-of-fit tests not shown here, a pure power-law would not be an optimal
fit for any of the degree distributions. But it is also documented in (Barabási et al.,
2016) that heavy-tailed distributions are rarely approximated well with pure power-
law distributions, but rather they need some modifications, for example exponential
cut-offs. Since this issue is not the main focus of this work, these modifications and
alternatives are not explored here. But more generally, heavy-tailed degree distri-
butions already imply that there are some hubs in the networks. These hubs in
economic networks are important since they are orders of magnitude larger than
other actors in the network, therefore they have a crucial role in any kind of activity
that takes place on this network. For example in financial networks hubs are usu-
ally classified as systemically important financial institutions, since their operations
are essential for the functioning (in terms of liquidity for instance) of the financial
network and the failure of these hubs might result in a cascade of failures through-
out this system. This example illustrates that the existence of hubs in economic
networks implies substantially different system characteristics in terms of robust-
ness, spreading processes or average distance between nodes and therefore economic
networks with hubs require special considerations and analysis. The labour flow
and the company control networks both have hubs, thus they are also expected to
exhibit the characteristics mentioned previously.

It is also interesting to see that the assortativity coefficients are quite large
in most cases that are considered here. Assortativity measures whether similar
nodes are more likely to link to each other or not. For example, the high degree
assortativity in the company control network suggests that companies with a large
number of investors usually share at least some investors, whereas small companies
might be connected by one or a few small, but locally influential investors. The
positive and quite high regional and industrial assortativity shows the first signs
that there might be substantial “geo-industrial clustering” in the company control
and the labour flow networks. Assortativity might also be useful to derive relevant
features for link prediction in networks.

The age distribution of firms in the sample is shown on figure 3:

Figure 3: Age distribution of active companies in the sample

The mode of the distribution for the age of the firms in the sample seems to be
around 15-20 years, then it decays more or less exponentially. The best continuous

16



Structure and power dynamics in economic networks Aron Pap

parametric fit to the distribution of firms’ age is a generalized inverse Weibull
probability density function, shown in the Appendix (figure A.2).

There are some hubs both in terms of regions (clearly London is the largest one
in the case of the UK) and industries in the sample, which contain large amount of
companies, whereas most of the regions/industries only contain a moderate amount
of firms. I visualise this observation through rank plots6 on figure 4, first going
until rank 200 then going only until rank 10. It is interesting to see that London
(as the region with rank 1) is still an outlier on this rank plot. But apart from the
rank 1 observations, the “shrinking factor” of both the regional and the industrial
rank plot might be approximated reasonably well through a power-law. The same
analysis with the actual names of the 10 largest industries and regions can be found
in the Appendix, on figure A.3.

Figure 4: Firm distribution across regions and industries in the sample

II.3 Network analysis

In this section the labour flow and company control networks are analysed from
different aspects. Several empirical characteristics of these networks are reported,
visualised and discussed.

II.3.1 Undirected labour flow network

Degree distribution

The undirected labour flow network has several “hub” companies as it is exhib-
ited on figure 5. This means that there are certain companies which attract and
then “distribute” officers who are active in several companies and who traverse a
significant portion of the network of companies throughout their careers. This also
suggests that there are large groups/families of companies, among which officers
might flow. But it might also be noted that the majority of the companies are only
connected to a few others, which means that most of them only have a few officers,
who might spend their entire career at those particular firms. This result might also
be explained by administrative reasons, since numerous small enterprises are present
in the data, with their founders being their only officer (self-employed individuals).

6A popular way to present power-law distributions.
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Figure 5: Degree distribution of the undirected labour flow network

Edge weights
The weight of the edges between companies can also be approximated with

power-law distributions as it is depicted on figure 6 (log-log plot with logarithmic
binning, since that is the correct approach to plot power-law distribution based on
(Barabási et al., 2016))7, but the decay is quite fast in this case. Most of the edges
have a small weight (1 or 2) but there are a few which have 20+ weight. Based
on manual inspection, these extreme values might be due to reorganisation efforts
within a group of companies, controlled by the same holding company for instance.

Figure 6: Power-law fitted to the edge weight distribution in the undirected LFN

Connected components
In case of the undirected LFN, there is one giant component, which is extremely

large compared to the other connected components. This might also be due to the
data collection procedure, nevertheless it shows how interconnected the world of
company officers and directors is.

Community detection
For community detection, I used the Louvain-method and the Infomap method,

which resulted in quite similar communities, therefore in the subsequent analysis
what is shown is the result of the Louvain-method.

On figure 7 the sizes of the detected communities are shown. These community
sizes exhibit interesting patterns, since the majority of them are single-firm commu-

7The fitted trend means the degree exponent of the assumed power-law distribution, which
is estimated in 2 different ways: fitting a linear trendline to the log-log plot with logarithmic
binning/using the MLE estimate that is described in the Appendix.
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nities, but then there is a long “plateau” of communities with sizes ∈ [0, 2000] and
then there are a few large communities with more than 3000 firms.

Figure 7: Community size distribution in the undirected LFN

Micro-level analysis of these communities might also provide some hints for the
general local characteristics of the network, as shown on figure 8 for an arbitrarily
chosen community for illustration purposes:

Figure 8: Community micro-analysis example in the undirected LFN

It is depicted well on the subgraph of the cluster that the nodes are quite in-
terlinked and that there is no central company which connects otherwise disparate
parts of the network. This is also visible from the histogram of the betweenness
centralities of the nodes in the community, where a significant portion of nodes have
high betweenness. However, strong geo-industrial clustering is present, since 1-2
regions and industries account for a majority of the nodes (London, Doncaster and
the production of electricity respectively). This provides an indication of the “geo-
industrial clustering” that is aligned with the global assortativity values, shown in
1.
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The induced network of community detection is shown on the left plot of figure
9, where each node is a community and the weight of the links is equal to the sum
of the links between the firms of the different communities. The size of the nodes
represents the community sizes and the color scale represents the degrees of nodes
in the induced network. It is evident that there are hubs among the communities as
well and that large communities are also tend to be more interconnected with other
communities (the degree of nodes in the induced network exceeds 100 in several
cases), rather than being isolated “universe” in the undirected labour flow network.
The right plot on figure 9 highlights the 10 largest communities from the induced
network. The width of the depicted edges is proportional to their weight and it is
interesting to see that the strongest “ties” are between the third and fourth largest
communities.

0

20

40

60

80

100

Interconnectedness of 10 largest community in the induced graph

Figure 9: Global community structure in the undirected LFN

II.3.2 Directed labour flow network

Degree distribution
It is also of interest to investigate whether the distribution of in- and outdegrees

differ in case of the directed labour flow network. As it is depiced on figure 10,
these degree distributions are quite similar, but the out-degrees have more extreme
values.

Figure 10: Degree distribution in the directed labour flow network

Edge weights
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Regarding the edge weights among firms one important hypothesis is that the
strong connections (larger edge weights) should be partitioned into the same commu-
nities by any community detection algorithm. Figure 11 reassures this hypothesis,
since it is straightforward to see from this figure that the edge weights between
communities are small (compared to edge weights within communities):

∀i, j, such that Ci 6= Cj wgi,j ≤ 3

where wgi,j is the weight of the edge between i and j and Ci is the community
of node i.

Figure 11: Edge weights in the directed LFN and its variation with communities

Connected components
For the connected components, a similar pattern is observed for the directed

LFN as what has been documented for the undirected LFN. Here I consider weakly
connected components. There is one giant component, along with thousands of
small ones.

Community detection
In case of the directed LFN, the Leiden-method is used for community detec-

tion. The sizes of these detected communities follow interesting shapes, just as in the
case of the undirected LFN. These community sizes, along with a micro-community
analysis are shown on figure 12.

Figure 12: Community detection in the directed LFN
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Dynamical analysis
I also carried out some dynamical analysis for the directed labour flow network

with the aim to provide answers to the following questions 8:

1. How the community of a given node/company is evolving over time?

2. How stable/persistent communities are over time?

On figure 13 the characteristics of the community of the same company (which
is chosen arbitrarily again for illustration purposes) are shown with all data up to
2005 and then with all data up to mid-2020. It is straightforward to see how the
community is growing, but still a particular region/industry tends to dominate its
composition.

Figure 13: Community evolution of a single node in the directed LFN

But of course the approach discussed above is only applicable at the local,
neighbourhood-level, therefore I also use some global quantities, which can con-
cisely indicate the stability of communities over time. Therefore I am running the
Leiden-method for community detection at two distinct points in time (2015 and
2020 specifically) and I am analysing the communities at those times. On figure 14
on the left it is shown how the size of the community at the earlier point in time (in
2015) correlates with the number of unique communities the companies “cover” by
the later point in time (in 2020), that is for all the companies in the original com-
munity, in how many unique communities are they “partitioned into” at the later
point in time. For example if we have a community in 2015 with four companies,
but then these four companies are actually in two different communities in 2020,
then that would result in a dot at the (4,2)-coordinate on the left plot.

A simple global quantity that I am using to measure the stability of the com-
munities will be called “dynamical community stability indicator”. The dynamical
community stability indicator value is defined as follows for a particular initial com-
munity (building on the ideas from the previous paragraph):

DCSI
(t0,t)
i =

S
(t0)
i

UC
(t)
i

∀i = 1, ..nc

where DCSI
(t0,t)
i is the dynamical community stability indicator value for the i-

th initial community between the dates of t0 and t, S
(t0)
i is the size of the initial

8I also analysed whether inflows create more outflows later for a particular company, that is
trying to predict out-degree growth from the growth of the in-degree, but this analysis has not
revealed robust connections, therefore it is not included in this document.
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community at t0, UC
(t)
i is the number of unique communities that the companies

from the initial cluster are “partitioned into” at t and nc is the number of detected
communities at the earlier point in time.

Figure 14 shows the results from computing these statistics for a sample of 1000
clusters and not the whole “population” due to computational constraints. It is
evident from the figure that the the small communities, which represent the vast
majority of all detected communities “stay together”, whereas for the larger commu-
nities, an approximately linear trend can be seen with a few outliers. This positive
relation is expected, but it is unclear in advance whether an exponential, linear or
logarithmic trendline might be the best fit. Also, the slope of this linear trend is of
great interest, since it might help to forecast the number of new communities emerg-
ing from one initial large community. The result that communities with up to 500
companies do not get “partitioned into” more than 20 clusters over a 5 years horizon
suggests quite strong stability in this network. The distribution of the dynamical
community stability indicator values is highly correlated with the cluster sizes, how-
ever a consistent and unbiased estimate of the mean of this dynamical community
stability indicator value can be useful in practice. Since this estimate provides an
approximation of the “equilibrium size of communities” in the directed labour flow
network. It also suggests that each community with a smaller size than this mean
value will not fall apart until the next observation, whereas for larger communities,
it offers an estimate of how many new communities might be “reachable” from this
original large community. One practical application of this analysis might be re-
lated to the prediction and optimization of spreading ideas and innovations through
networks, when not individual nodes, but communities are the focus of interest. In
this case the dynamical community stability indicator values might help to predict
the spread of the idea/innovation from some initial nodes9.

Figure 14: Dynamical stability analysis of communities for the directed LFN

II.3.3 Company control network

Degree distribution

The degree distribution of nodes in the company control network follows a heavy-
tailed distribution. This means that most of the companies have small degree in
this network, but there are a few hubs, with extremely large degrees. One potential
reason for the existence of these hubs is shown on the plot on the right of Figure
15, since some legal persons have significant control in 100+ companies, therefore
having such type of investors can contribute to emerging hubs in this network.

9Usually called seeds in the related literature.
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Figure 15: Degree distribution in the company control network

Edge weights
The weight of the edges in the company control network also seems to follow a

heavy-tailed distribution as it is shown on figure 16. However, there is surprisingly
many edges with 20+ weight. This might be due to the fact that some legal persons
might have significant control in all affiliates of a holding company, therefore these
edges might connect affiliates of the same holding.

Figure 16: Edge weights in the company control network

Connected components
In this network there are also a few connected components, which are signifi-

cantly larger than the others, however there is no single giant component, since the
largest one only contains approximately 2 percent of all nodes in the network. The
histogram for the sizes of these components is shown on Figure 17.

Figure 17: Connected components in the company control network

Community detection
For community detection in the company control network I use the Louvain-

method and the Infomap equation again. However, since both result in com-
munities with similar macroscopic characteristics (e.g. size distribution, number of
communities) I focus the discussion on the result of the Louvain-method. The size
of these communities seems to decay like a power-law as it is illustrated on Figure
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18. Also shown on the figure a micro-analysis for an arbitrarily chosen community,
which reveals geo-industrial clustering again, but also shows an example where one
company/node acts as a “bridge” between parts of the network and therefore has a
significantly higher betweenness centrality value than others.

Figure 18: Community detection in the company control network

It is also of particular interest to quantify the “geo-industrial clustering” that
has been qualitatively identified through the community detection procedure. The
metric that I use for this purpose is the Herfindahl’s concentration index (also
described here (Rhoades, 1993)). This index usually measures how market shares
are distributed among companies and provides an estimate for the concentration
of the market this way. For example, if there is a single company on a specific
market, which is responsible for all the sales on this market, then this market would
have a Herfindahl’s concentration index of 1. On the other hand, if all firms have
equal share on a given market and the number of firms grows to infinity, then the
Herfindahl’s concentration index goes to 0.

For the analysis here, the concentration is understood in terms of regions and
industries, meaning that a set of firms is considered and their respective industries
and regions. Then it can be computed how much share a given industry or region
has in the set of firms (normalised frequency of each industry or region basically).
These shares (normalised frequencies) then can be used to compute the Herfindahl’s
concentration index, obtaining a regional/industrial concentration index for the set
of firms in question. I apply the outlined procedure for all communities which are
identified by the Louvain-method for the company control network. On figure 19
on the left plots the size of a community is plotted against the regional/industrial
Herfindahl’s concentration index for the community10. The concentration is decreas-
ing as the communities grow, however even for larger communities, the concentration
values are significantly higher than the corresponding global values (that is the re-
gional/industrial Herfindahl’s concentration index when using the whole sample of
firms as a set).

However, a different experiment and analysis is needed in order to provide sug-
gestive evidence that the regional/industrial concentration values of the communities
of the company control network indeed exhibit “geo-industrial clustering”. I carry
out a randomization experiment to do this, which works as follows:

1. Take the original communities in the network

2. For t = 1, 2, . . . T

• Choose 2 communities randomly

10Communities of size 1 are excluded from this analysis.
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• Choose 1-1 firm randomly from the communities chosen in the previous
step

• Switch the chosen firms between the communities

3. Output the new, randomized communities and compute the regional/industrial
Herfindahl’s concentration index for them

This procedure preserves the characteristics of the communities (e.g. the dis-
tribution of community sizes) and also the regional/industrial composition of the
whole sample. Therefore, if the regional/industrial Herfindahl’s concentration index
is substantially smaller for the randomized communities than for the original ones,
then the data provides suggestive evidence that there is significant “geo-industrial
clustering” among these firms. Thus the analysed networks can also help to de-
tect “geo-industrial clustering” as an interesting alternative to standard industrial
classification for example.

On the right plots of figure 19 the comparison between the regional/industrial
concentration of the original and randomized communities is shown. The random-
ized communities are obtained via running the outlined procedure for one million
iterations (T = 1, 000, 000). It is clear to see from the figure that the randomized
communities have lower Herfindahl’s concentration index both for regions and in-
dustries. Thus this experiment provides suggestive evidence that there is substantial
“geo-industrial clustering” in the company control network.

Figure 19: Geo-industrial clustering in the company control network

Investor type analysis
The CompaniesHouse data source does not directly classify the legal persons

with significant control as “natural” or “institutional” entities, however I realized
during manual inspection of the data that this could be possible with the text of
the name of the legal person. Natural legal persons are any people who invest in the
company, whereas institutional legal persons are other firms or other organizations
(e.g. charities, associations). Having institutional legal persons with significant
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control in a firm might indicate that the firm became part of a group of companies,
controlled by the same holding companies. This could mean better access to capital,
information or human resources, therefore it might be beneficial for the firms to have
institutional investors. It might also help the firm to attract more investors, since
the presence of an institutional investor might signal to the rest of the market that
this firm has solid growth prospects. However, institutional investors might be more
reluctant to share control with others than natural legal person investors, which
would not let the firm to increase its number of investors significantly (after giving
significant control to an institutional legal entity). Given these tensions and trade-
offs in the potential impact of having institutional legal persons with significant
control in the company, the analysis of the company control network with respect
to the type of investors seem interesting. Also, it has direct real-world applications,
since a firm might use the insights from such an analysis to support its decision on
whether to try to attract capital from institutional or natural legal person investors.
In the company projection network, the degree of the node (firm) represents how
interconnected the node (firm) is through its investors. This is a reasonable estimate
for the “combined influence” that its investors have. Therefore this is a quantity
that is of primary interest throughout this analysis, since exploring the relationship
between the degree of a node in the company projection network and its investor
composition help to understand what “mix” of investor control might be the most
beneficial in the current phase of a firm’s lifecycle.

A simple natural language processing approach is used to get the distinction,
basically looking for predetermined patterns in the names of the legal persons, to
classify them either as natural legal person or institutional legal person. There is an
approximately equal share of the two groups in the data. Then the main question
is whether there is any systematic difference in network quantities that might be
associated with the “investor composition” of a firm. As it can be seen on Figure
20, a really interesting pattern is emerging. At first glance, the number of investors
(legal persons with significant control in the firm) of a firm does not seem to be
correlated with the degree of the firm in the network. This is counterintuitive, since
each of those investors might have significant control in other firms as well, therefore
each of them represent potential additional links in the company control network
(since it is a one-mode projection of the original bipartite network of companies
and investors). Thus the expectation is that the degree of the companies would
grow with the number of investors they have. But on the aggregated level, this
correlation is not present. However, with a closer inspection and via distinguishing
between natural and institutional legal persons, a new pattern is emerging. Now
the number of institutional legal persons of a firm seem to be strongly associated
with its degree in the company control network, whereas the number of natural legal
persons does not seem to have a significant impact. Since this is one of the main
empirical observations of this thesis, it is discussed further in Section III.1.

II.4 Summary of empirical findings

In the previous section I carried out a detailed analysis of the undirected labour
flow network, the directed labour flow network and the company control network.
I introduced the data collection procedure and also discussed some important sum-
mary statistics of the networks. I have identified that their degree distribution,
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edge weights, connected component sizes and community sizes all seem to follow
heavy-tailed distributions, which is frequently observed in other empirical networks
as well. I also argued about some potential underlying mechanisms which might be
responsible for the emerging hubs in these networks. Strong geo-industrial cluster-
ing is observed in the communities of the networks as well. Nevertheless, it is also
evident that the network topology and structure provide superior information about
labour flows, company connections and power dynamics, compared to a traditional
standard industrial/regional classification schemes. Therefore this analysis might
provide valuable decision-support for evaluating policy interventions on the labour
market.

I also identified an informative distinction between natural and institutional legal
persons for the company control network, which helps to find suggestive evidence
about the potential relationship between the type and ratio of the investors of a firm
and its degree in the network. Then this evidence also relate closely to how “influ-
ential” the investors of a particular firm are, which might be of practical interest to
any company that is planning to attract capital. But it is also important from the
investors’ perspective in the real-world too, because they want to understand the
power dynamics that they can expect in a particular firm, before they invest in it.
Since these relationships are observed even when the degree of a firm is normalized
with the number of its investors and even when different subnetworks are considered
according to region or industry, this new stylized fact is further discussed in section
III.1.

III Company control network formation model

First of all, the main empirical observations and a new stylized fact is discussed in
this section. Then I formalise a causal model of power dynamics for the company
control network. Next I perform some numerical simulations and compare their
results to the corresponding empirical values to see how closely they match. Uncer-
tainty analysis is also conducted to see how robust the results are as certain model
parameters are varied. Then finally a Bayesian optimization approach is taken for
the model calibration in order to find those combinations of the parameters, which
produce results closest to the empirical observations.

III.1 Main empirical observations and a new stylized fact

Throughout the analysis of the networks several important empirical observations
emerged, but these are well-documented in the literature (e.g. heavy-tailed degree
distribution, edge weights significantly higher within communities than between
communities, strong geo-industrial clustering) and there are already several models
trying to explain them. However, there is one particular pattern which is related to
the relationship between the institutional investors of a firm and its degree centrality
in the company control network. Since to the best of my knowledge this has not
been documented before, it is an interesting contribution of my current work.

Figure 20 and figure 21 highlight these most important empirical observations
which I identified during the analysis of the company control network. First I look
at the median degree of companies with a certain number of institutional/natural
or total (institutional + natural) legal persons having significant control in the
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company. As it is depicted on figure 20 the median does not change significantly as
the number of total or natural legal persons with significant control in the company
are varied. However as the number of institutional investors increases, the median
of the degrees grow significantly, then it peaks around 4 (the 8+ category has only a
few observations). This suggests that the most powerful institutional investors, who
have significant control in numerous companies and who are partially responsible for
creating the hubs in the network, do not like to share their control with too many
other parties, especially not other institutional investors. Having multiple powerful
institutional investors only happen in special cases, probably for “star companies”.
The plots therefore also suggest that there seems to be a “saturation point” for
the benefit that institutional entities gain from investing in firms, therefore they
try to pick investment opportunities where they can be in the “driving seat” and
they do not have fear from other players having significant control in the firm as
well. On figure 20 on the right plot a similar analysis is shown, but this time for
the degree per investor quantity, to control for the number of investors of the firms.
The patterns are different, but it is still evident that having the same number of
institutional investors yields substantially higher median values for the degree per
investor quantity than for the other cases.

On figure 21 this idea is extended and on the x-axis I show the ratio of institu-
tional legal persons among all the legal persons with significant control in the firm.
On the y-axis I show the degree per investor quantity that I introduced in the pre-
vious section. Note the discrete nature of these quantities are due to the fact that
counts of the investors of certain types are used (since the actual ownership share
are not available publicly). Interesting patterns are exhibited here as well. Extreme
cases (e.g. only natural or institutional legal persons with significant control) have
“majority” of observations and the degree per investor value is highest for the firms
with only institutional investors. However, inbetween the extremes, we see a bell-
shaped “upper-frontier” for the degree per investor quantities, which is highest when
there is a power-balance between the type of investors. This intriguing observation
is highlighted on the right plot of figure 21. I first group the observations into 10
bins of equal length according to the share of institutional investors11 and then plot
the 95-th percentile of the degree per investor quantity for the firms in each spe-
cific bin. This “upper-frontier” is depicted with a solid line and markers, and the
actual datapoints are also superimposed on the plot. Again, these results might be
distorted due to the discrete nature of the data, but still raise the question of what
kind of network formation processes or mechanism could explain this pattern?

But the implications that this observation might have, are also intriguing from
a practical perspective. It seems that firms with influential investors (and thus high
degree in the company control network) tend to have a “balance” between natural
legal persons and institutional legal entities among their investors with significant
control. It is unclear in advance however, whether this is something driven by the
firms, or the investors or by some institutional frameworks (e.g. laws, regulations).
I also searched for such institutional frameworks in the related UK regulation, but
I could not find any rules directly addressing this issue. Therefore I continue with
focusing on potential causal models that could account for these new stylized facts.

11The extreme cases of only natural or institutional legal persons with significant control are
excluded from this analysis.
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Figure 20: Stylized facts about the company control network (median degrees)
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Figure 21: Stylized facts about the company control network (institution shares)

In the next section I devise a theoretical network formation model that helps to
understand the potential processes or mechanisms which might be the “underlying
drivers” for these empirical observations.

III.2 Formal description of the model

In this model, there are 2 types of agents: firms and people. Both firms and people
have capital, which they can invest in firms, but firms can also use that capital for
production in order to generate profit. The profit of firms is a function of the capital
they have, but generated stochastically from the following Gaussian distribution:

πi ∼ N
(
Kδi
i − ci ·Ki,

1

(Ki + 1)γ

)
where Ki is the current capital level of firm i, δi is a firm-specific productivity
parameter, ci is a firm-specific cost parameter. Then this model also implicitly
assumes that larger firms have less variance in their profit generating process (which
is a well-established stylized fact). Also each firm can compute its own optimal
capital level (with respect to maximizing the expected profit):

K∗i =

(
ci
δi

) 1
δi−1

and it tries to attract this amount of capital (if it reaches this level, it will not accept
more investments and/or move some of its own capital elsewhere). Each firm also
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knows the marginal profit that could be achieved by 1 additional unit of capital,
given its current capitalization. So companies have perfect information about them-
selves, but they do not have perfect information about the other companies. People
also lack perfect information about the characteristics of the companies. Therefore
both people and companies, when acting as investors, use a “noisy signal” to esti-
mate the profitability of each investment option. Realized profits and past capital
levels are publicly known,therefore the decision-making heuristic that the investors
are using to estimate profitability is the following:

P̂ I i =

∑T
t=1 π

(t)
i∑T

t=1K
(t)
i

where π
(t)
i is the profit of firm i in timestep t, whereas K

(t)
i is the capital of firm i

in timestep t. Then the investor agents use these profitability estimates to weight
the investment and divestment choices. In particular, the probability of choosing a
particular company i for investment is given by the following expression:

max
(
P̂ I i + 1; 0

)
∑nc

j=1

(
max

(
P̂ Ij + 1; 0

))
and then the divestment probabilities are inversely proportional to the above quan-
tity. Using these probabilities, at each timestep, investor agents (people and com-
panies), divest some of their holdings according to the outcome of a Bernoulli trial
(with mean equal to the divestment probability). After that they have some available
capital to invest (the stakes from the divestment and also the share of profits that
they might have received from their holdings). They choose a predetermined num-
ber of companies to invest in, and share their available capital among them (again
re-weighting between the selected ones only, using the formula described above) to
make investment offers.
Then it is the turn of the companies, who first evaluate the amount of capital needed
at timestep t. For an arbitrary firm i, it has the following equation:

K
(t)(needed)
i = K∗i −K

(t−1)
i

Then the company considers the investment offers that it received (which are reshuf-
fled randomly in each round) and chooses the first offer, but then the final investment
is constrained by the actual capital needs of the company, in particular:

I
(t)
i = min

(
K

(t)(needed)
i ;O

(t)
i

)
where I

(t)
i is the investment received by company i at timestep t and O

(t)
i is the first

entry in the “offer book” of company i at timestep t. To rephrase this investment
process in terms of the strategic network formation literature, mutual consent is
needed for forming a link, but investors can unilaterally destroy the link later.
Some special considerations which are also incorporated in the model and can be
tuned via parameters:

• Companies are initialized with larger levels of capital than people

• Companies can make more divestment and investment offers in a given round

Below the high-level pseudo-code is shown for the simulation of the model.
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Algorithm 1 Network formation model

1: Initialize network
2: Create nc companies with initial capital level, productivity and cost parameters

all drawn from a Uniform distribution
3: Create ni investors (people) with initial capital level drawn from a Uniform

distribution
4: for t = 1, 2, . . . T do
5: for company = 1, 2, . . . , nc do
6: Profits/losses generated stochastically according to the current capital

levels
7: Profits/losses are distributed among the shareholders according to their

respective stakes in the company
8: end for
9: for company = 1, 2, . . . , nc do

10: Divestment choices and investment offers are made stochastically based
on the behaviour rules described above

11: end for
12: for investor = 1, 2, . . . , ni do
13: Divestment choices and investment offers are made stochastically based

on the behaviour rules described above
14: end for
15: for company = 1, 2, . . . , nc do
16: The first offer from the “offer book” is chosen
17: Capital levels of companies are updated
18: end for
19: end for
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III.3 Simulations and sensitivity analysis

Simulation results

First I run some simulations to see how the results of the numerical experiments
compare with the empirical outcomes. On figure 22 one such simulation result is
shown, with a manually chosen set of model parameters. The results capture some
characteristics of the empirical quantities, however visual inspection is not satis-
factory for the comparison, therefore a more disciplined approach to compare the
empirical result with the simulations is introduced in the next paragraph.

Figure 22: Simulation results for the network formation model

First of all, the “stylized facts” that the network formation model should be able
to reproduce are the following:

• Degree distribution of the company control network

• Median degree of companies with a given number of institutional/natural/total
investors

• Degree per investor dynamics as a function of the share of institutions among
a company’s controllers

Therefore a new quantity is devised in order to summarize how closely the simula-
tions match the stylized facts simultaneously. This new quantity is called “error
function” throughout this document.

Error function = α1 ·Ψ1 + α2 ·Ψ2 + α3 ·Ψ2

where αi are just parameters such that
∑3

i=1 αi = 1 and Ψ1 is the value of the
Kolmogorov-Smirnov test statistic for the empirical and simulated degree distribu-
tion in the company control network. Formally:

Ψ1 = supd|Fempirical(d)−Fsimulated(d)|

where Fempirical(d) = 1
n

∑n
i=1 1{di<d} and n is the number of companies in the network

(Fsimulated(d) is defined similarly).
Ψ2 is a quantity derived from the negative Kendall-Tau rank correlation be-

tween the median degree dynamics of the empirical and the simulated results. More
formally:

Ψ2 = −τ(I,A) − τ(I,N)
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where τ(I,A) is the Kendall-Tau rank correlation coefficient between the following
empirical and simulated quantities:

m(a) ∈ R8 and m
(a)
i =

Me(inst=i)(d)

Me(all=i)(d)
, i = 1, 2..8

So the i-th entry of this vector is the ratio of the median degrees of companies with i
institutional investors and i total investors respectively. For τ(I,N) the computations
are similar, but this time the vector contains the ratios between the median de-
grees of companies with i institutional investors and i natural legal person investors
respectively.

Similarly, Ψ3 is a quantity derived from the negative Kendall-Tau rank corre-
lation between the degree per investor (as a function of the share of institutional
investors, using median values from the discrete bins introduced in section III.1)
series of the empirical and the simulated results.

Then as it is stated in the beginning of this section, the final “error function”
is a linear combination of these 3 quantities and it is used in later analysis as an
objective function to optimize (minimize specifically).

Based on the definition of the error function, it is straightforward to see that
the values it takes are in the following interval: [−0.66, 1], with smaller values cor-
responding to a better fit between the empirical and simulated results.

Sensitivity analysis

Here I analyse how sensitive the simulation results are to changing the degree ex-
ponent of the variance of the profit generating process. On figure 23 I show the
degree distributions for varying γ values, whereas the plot on the right shows the
confidence interval for the error function value between the simulation results and
the empirical results, for varying variance parameter again, keeping everything else
constant. For each γ parameter value, 10 independent simulations are performed
and the plot shows the average +/- 1.96*(standard deviation) of the error function
value. The sensitivity of the results to changing this variance parameter is lower
than expected.

Figure 23: Sensitivity analysis of the variance parameter of the profit generating
process

Another free parameter of the model which is expected to make the error func-
tion value sensitive is the share of “natural legal person” investors, compared to the

34



Structure and power dynamics in economic networks Aron Pap

number of companies in the simulation. Numerical experiments match the expecta-
tions closer in this case, since as it is evident on figure 24, the confidence interval for
the error function is wider than in case of the variance parameter before, whereas
the average is also fluctuating around 0.1 in this case (10 independent simulations
are done for this analysis as well).

Figure 24: Sensitivity analysis for the number of “natural legal person” investors

Since the error function values have consistently high variance across different
parameter values, it seems that the simulation model in general has high uncer-
tainty. However, there is variation in this “instability” as well, since the numerical
simulations show that results are more variable when the ratio of investor types is
changing compared to changing the variance equation in the profit generating pro-
cess, which is not straightforward to predict from the analytical form of the model
beforehand. On the other hand, the mean of these simulations is not changing
rapidly, which suggests low sensitivity. The performance metric (error function) is
probably more sensitive to varying a combination of model parameters rather than
only one of them. Therefore the partial and “complete” optimization procedures of
the next section can indirectly provide insights for sensitivity analysis as well.

III.4 Calibration method for model parameters

I also carried out some experiments to optimize the parameters of the network
formation model in order to match several empirical observations simultaneously.
For this exercise the previously introduced error function is used as an objective
function. As an optimization procedure I utilised the Hyperopt Python package,
specifically the graphical model-based Tree-based Parzen Estimator, as it is proposed
in (Bergstra et al., 2011) for Sequential Model-based Global Optimization. One of
the main differences between the Tree-based Parzen Estimator (denoted also as
TPE) and the more classical Gaussian processes (denoted also as GP) is that the
TPE uses an inverse factorization (with a model for P(x|y)) and the TPE is also
cheaper in terms of computational cost.

On figure 25 the partial optimization for several model parameters are shown.
Parameters for the firm cost function, productivity, number of different type of
agents and number of investments per round are all considered here and optimized
(pairwise) partially, keeping the other model parameters at some default value. The

35

https://hyperopt.github.io/hyperopt/


Structure and power dynamics in economic networks Aron Pap

algorithm sequentially evaluates the objective function at those parameter combi-
nations, which give the highest expected improvement compared to the current best
value achieved based on the samples collected so far. The plots show these sample
evaluations and their corresponding error function value. However, since the results
of a particular simulation round have a substantial amount of variance, several sim-
ulations for each parameter combinations would be needed to get robust estimates.
Also, the search space could be extended further as well. It is important to keep
these limitations in mind, nevertheless computational resource considerations also
matter here, therefore the current approach seems to be a reasonable and practi-
cal way to get approximate estimates for the “promising” regions of the parameter
space. For example it is straightforward to see that the error function value is lower
when firms can make substantially more investment offers in each round than people.

Figure 25: Parameter optimization for the network formation model

After these partial optimization approaches, I also conduct a more complete
model parameter calibration method, where I vary all free parameters of interest.
However, since the model have nine parameters, this raises the issue of overfitting.
Therefore as the final model calibration approach, I fixed some of the model param-
eters (either to the their partial optimum value or to manually chosen values) and
I only optimized the model parameters which seem to make the error function sen-
sitive. The number of natural legal person investors and the number of investments
per round that certain investor agents are making seem the most important param-
eters, therefore these are the free parameters in the final model calibration. Clearly,
for the number of natural legal person investors, what truly matters is their ratio
compared to the number of firms, however since the number of firms is fixed, the
model calibration optimizes the ratio implicitly as well. Then for each considered
model parameter combinations I run 5 simulations and average those to get a more
robust estimate for the error value. With this approach the minimum “error func-
tion” value is -0.17 which is smaller than the averages from the partial optimization.
This is reassuring, since this model calibration is searching a larger parameter space
now. The predetermined model parameter values are shown in table 2, whereas the
optimal model parameter values found by the calibration method are shown in table
3:

These results also seem sensible from a practical point of view, since in the em-
pirical data, there are also significantly more natural legal person investors than
firms to invest in and these natural legal persons on average make fewer investments
than the institutional legal persons. This is not surprising, since the model calibra-
tion is aimed at minimizing the mismatch between the empirical and the simulation
results. Still, the fact that the calibrated model parameters are consistent with the
real-world experience offers greater support for the validity of the network formation
model.
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Model parameter Fixed parameter value
Number of firms 300
Maximum productivity (δ) 1
Maximum cost 1
Maximum initial capital for firms 1.5
Guaranteed initial capital for firms 0.5
Maximum initial capital for people 1

Table 2: Fixed parameters for the model calibration

Model parameter Calibrated parameter value
Number of people 587
Number of investments per round for companies 6
Number of investments per round for people 2

Table 3: Optimized parameters from model calibration

The comparison between the empirical results and the simulation results with
the calibrated model is shown on figure 26. This exhibits that the model is capable
of reproducing the main patterns of the empirical characteristics. Via calibrating
more model parameters it would be possible to fit the empirical observations even
more closely, however that would raise the issue of overfitting again. The current
calibrated model seems to capture the most important empirical patterns, however
it is also expected to be robust, to provide similar performance results on different
empirical data.

Figure 26: Comparison between empirical and simulation results with the calibrated
model

As it is evident from the middle plot of figure 26, the calibrated model can
accurately capture the “bell-shape” and the “extremes” for the relationship between
the share of institutional legal persons and degree per investor quantities (there is
some offset, but the shape is the same). However, the calibrated model performs
weaker for the degree distribution, since more mass on small degree nodes and less
extremely large hubs would be needed from the simulation results to have a better
fit to the empirical data. The median dynamics are reproduced to some extent,
as shown on the right plot of figure 26. There the main improvement could be to
reproduce the approximately flat curve when considering median degree dynamics
as a function of the number of natural and total investors (the dynamics of the
institutional legal persons are fitted well).

These results show how methods and techniques from data science, combined
with causal network formation models can provide insights for understanding certain
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economic activities. Based on the calibrated parameters it seems that the composi-
tion of different agents in the company control network, together with their different
decision-making rules for investments are the main drivers for the empirical observa-
tions documented in this thesis. These insights could not be discovered without using
tools from data science in order to perform empirical analysis on large, real-world
networks. But causal inference and theoretical models are also needed to understand
and explain the underlying economic processes and mechanisms. Then these insights
are useful from the practical perspective as well, since both firms and investors can
individually benefit from optimizing their behaviour according a principled model
of others’ actions. Moreover, these insights might also be valuable for policy-makers
who design the institutional framework for this economic activity directly. Since if
these policy-makers have some objective which might be measured/approximated
with network quantities (e.g. average degree/interconnectedness of firms in the com-
pany control network), then policy interventions and programmes could be designed
while using the presented causal model of network formation as a tool for counter-
factual analysis.

IV Conclusions

In this project I collect novel data on the employment history of company officers
in the UK and also on the ownership and control structure of UK companies. Then
I construct the labour flow and company control networks based on the collected
data and I perform a quantitative analysis of these networks. I first observe that
the labour flow and company control networks match several characteristics that
empirical networks tend to have in general, such as a heavy-tailed degree distribu-
tion, small-world effects, clustering and high assortativity. Substantial geo-industrial
clustering is also documented and subsequently analysed both at the local and the
“global” level, which is important from practical considerations. Dynamical analysis
also shows the stability of these clusters and their implications for the firm dynamics
on the labour market.

Intriguing empirical patterns and a new stylized fact are documented during the
study of the company control network, since there is suggestive evidence that the
types and number of investors are strongly associated with how “interconnected” a
firm is in the company control network. Based on the empirical data it also seems
that the largest institutional investors mainly seek opportunities where they can
have significant control without sharing it with other dominant players. Thus the
most “interconnected”/central firms in the company control network are the ones
who can maintain this power balance in their owner structure.

Then I devise a network formation model with microeconomic foundations to
better understand the potential underlying mechanisms for the empirically observed
stylized facts about the company control network. I carry out numerical simulations
and sensitivity analysis and also calibrate parameters of the model using Bayesian
optimization techniques to match the empirical results. With these procedures,
the obtained estimates capture the patterns observed in the empirical data. How-
ever, these results could be “fine-tuned” at different stages further, in order to have
a better empirical fit. First, the network formation model could be enhanced to
represent more complex agent interactions and decisions. But also, the model cal-
ibration method could be extended to include more parameters and a larger valid
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search space for each of those parameters.
This project could also benefit from improvements to the utilised data. For

example more granular data on the geographical regions could help to understand
the different parts of London more and to have a more detailed view of economic
hubs in the UK. Moreover, the current data source provides a static snapshot of the
ownership and control structure of firms. Panel data on this front could enhance
the analysis of the company control network, numerous experiments related to tem-
poral dynamics could be carried out, for example link prediction or testing whether
investors follow some kind of “preferential attachment” rules when acquiring signif-
icant control in firms.

Throughout this project I study and analyse several economic networks with
empirical data. There are numerous economic interactions taking place through
these networks, therefore it is highly relevant for policy-making to be able to use the
data on these economic networks for decision-support. Thus the natural next step
for this project would be to consider its model as a tool for counterfactual analysis
when designing policy interventions that affect the labour flow and company control
networks.
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Appendix

Other related literature
Another prominent algorithm for community detection is the map equation frame-
work combined with the Infomap search process, introduced in (Rosvall et al., 2009).
This method has completely different foundations than the previous algorithms,
since it is based on information theory principles and it is basically aiming to
minimize the code length that is needed to describe a random walker’s movement
across the network. To give an intuition for this, this description could be done with
assigning unique codes for each node in the network. However, it turns out that
utilising the structure in the network can help to get more efficient descriptions. In
particular, it is possible to partition the nodes into modules/communities and then
have unique codes for these communities, but also have unique codes for each node
inside a given community. Since codes can be reused inside different modules several
times this way, it might help to reduce the total description length of a random walk
on the network. It is straightforward to see that the length of codes used to identify
the modules increases as a function of the number of modules, but the length of
codes used to identify the nodes inside the communities decreases as a function of
the number of modules. Therefore, there is a specific number of modules at which
the sum of these two quantities is minimized and that is the minimum description
length for the flows/random walks on the network. The map equation is precisely
the following:

L(M) = qyH(Q) +
m∑
i=1

pi�H(P i)

where L(M) is the average code length for a step of the random walk, m is the
number of modules or communities,, H(Q) is the frequency-weighted average length
of codewords in the index codebook (the dictionary for the unique codes of the
modules), H(P i) is frequency-weighted average length of codewords in module code-
book (the dictionary for the unique codes of the nodes in a given module) i. Fur-
thermore, qy =

∑m
i=1 qiy, where qiy is probability to exit module i. Moreover,

pi� =
(∑

α∈i pα
)

+ qiy, where pα is the probability to visit node α. Since the deriva-
tions are quite involved, the interested readers can consult the original paper for
further detail. But what is important for the purposes of this current work, is that
this map equation is perfectly compatible with any heuristic/greedy method that
finds a network partition which optimizes an objective function. In the authors’
main implementation, the neighboring nodes are joined into modules, which sub-
sequently are joined into supermodules, until the map equation is minimized (the
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average code length cannot be decreased with merging modules anymore).

Several other methodologies are related to our subsequent network analysis, how-
ever since they are not crucial for our main goals and final results, we will briefly
discuss such literature in this section. One of the related topics was link prediction
in networks, which is an active area of research and several approaches are applied
for this problem. Just to highlight a specifically interesting one, (Clauset et al., 2008)
uses the hierarchical structure of the network to predict missing links in partially
observed networks. The authors show that this approach can explain and quantita-
tively reproduce many commonly observed topological properties of networks and
it can also outperform competing approaches, e.g. Common neighbours, Jaccard
coefficient or degree product. Machine learning approaches are also applied for link
prediction, a successful example is presented in (Chen et al., 2019), where the au-
thors used an Encoder-(Long Short-Term Memory)-Decoder deep learning model to
predict dynamic link formation in networks and they achieve state-of-the-art results
with their architecture.

Another important aspect to consider in case of labour flows is the occupational
similarity between the activities that someone will undertake and that he/she has
been doing before. The authors show in (Mealy et al., 2018) that people are more
likely to transition into jobs which share similar activities to their previous one and
that this occupational similarity has better predictive accuracy for job-to-job flows
than existing benchmark methods. A similar path is taken in (del Rio-Chanona
et al., 2019), but in that paper the authors focus on analysing how employment
patterns would change through the occupational mobility network as a result of
automation scenarios/shocks. But other authors in (Frank et al., 2019) highlight
the challenges and barriers in modelling such automation scenarios, which shows
that there is still lot to be done in order to understand and predict the complex
dynamics of labour markets.

A loosely related, but insightful reference for our research was the work from
(Youn et al., 2015), where they analyse empirical data on innovation, as a pro-
cess of searching through combinatorial possibilities, highlighting the ”exploration-
exploitation trade-off”, which is one of the main challenges in reinforcement learning.
But the reason why this paper is informative for our current work is that investors,
and legal persons with significant control in some companies face similar decisions
when ”optimizing their portfolio” since they might want to invest in some emerging
”star-companies”, but they also want to extract as much value from their current
holdings as possible. This insight was useful when devising our generative model for
the company control network.

Maximum Likelihood estimate for the degree exponent in power-law
dsitributions
In this section I derive the Maximum Likelihood estimate of the degree exponent,
when fitting power-law distributions (to the degree sequence data specifically here).
Here we assume real-valued, independently and identically distributed data, which
is satisfied by the degree sequence data on the networks. Then, the power-law
distribution has the following form:

P(d) =
γ − 1

dmin

(
d

dmin

)−γ
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where dmin is the minimum degree and d (d ≥ dmin), the degree is our random
variable and γ−1

dmin
is the normalising constant. Then the log-likelihood of our sample

data becomes:

L(γ) = log

n∏
i=1

γ − 1

dmin

(
d

dmin

)−γ
=

n∑
i=1

(
−γ
(
log

(
di
dmin

))
+ log

(
γ − 1
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then if we differentiate this expression with respect to γ and set the resulting ex-
pression equal to 0, then we get the following first order condition:
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Network analysis - general company information
Clearly ltd is the main legal company type, but there are several other categories

with small occurrences which are not shown on figure A.1:

Figure A.1: Legal type of companies in the sample

The best parametric fit with a continuous probability distribution for the age
of the firms in the sample is the generalized inverse Weibull distribution. The
sample age distribution and this parametric fit are shown on figure A.2.

Figure A.2: Company age distribution - best parametric fit
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Figure A.3 shows the same rank plot as it is in the main text, but now it also
includes the names of those ten largest regions and industries.
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Figure A.3: Firm distribution across regions and industries in the sample

Network analysis - Undirected LFN

It is also interesting to see on figure A.4 how officers are distributed among the
companies in the sample. Most companies only have a few officers, whereas a small
portion of companies have a different magnitude of officers. Therefore, a power-law
might be a reasonable approximation to the original histogram.

Figure A.4: Distribution of the number of officers in a company (undirected LFN)

Figure A.5 shows the size distribution of connected components. There is one
giant component along with several small ones.
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Figure A.5: Size of connected components (undirected LFN)

It is also possible to individually track each company throughout the sample and
observe how its links are growing over time as it is depicted on figure A.6.

Figure A.6: Following a single node’s network evolution over time (undirected LFN)

Analysing the empirical data also reveals that despite the strong geo-industrial
clustering, the community detection methods still provide additional value for un-
derstanding the interconnectedness of companies and labour flows and they can
provide a more accurate picture of labour flows than standard industrial classifica-
tion. Figure A.7 shows such an example, with several small industries represented
in a rather small community detected by the Louvain-method.
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Figure A.7: Industrial decomposition in a detected community (undirected LFN)

Network analysis - Directed LFN

I also implemented a simple random walker on the network1 to see how
much time it spends in each detected community, since this is one of the measures
that the map equation is using to find the best community structure. Figure A.8
shows running the random walk from a randomly chosen start node for 10, 000 steps,
with transition probabilities proportional to the weight of the outgoing edges and
with a 20 percent chance of “teleportation” to any part of the network. It is evident
that the walker usually finds a dense community/cluster and spends most of his/her
time there (the share refers to the number of steps inside the cluster divided by the
total number of steps).

1Also called random surfer due to the “teleportation” probability.
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Figure A.8: Random walks among communities (directed LFN)
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