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Abstract

For patients infected by Covid-19, underlying health conditions are often cited as a source

of increased vulnerability, of which exposure to high levels of air pollution has proven

to be an exacerbating cause. We investigate the effect of long-term pollution exposure

on Covid-19 mortality, admissions to hospitals and admissions to intensive care units in

France. Using cross-sectional count data at the local level, we fit mixed effect negative

binomial models with the three Covid-19 measures as dependent variables and atmo-

spheric PM2.5 concentration (µg/m3) as an explanatory variable, while adjusting for a

large set of potential confounders. We find that a one-unit increase in PM2.5 concentra-

tion raised on average the mortality rate by 22%, the admission to ICU rate by 11% and

the admission to hospital rate by 14% (rates with respect to population). These results

are robust to a large set of sensitivity analyses. As a novel contribution, we estimate

tangible marginal costs of pollution, and suggest that an marginal increase in pollution

resulted on average in 61 deaths and created a 1 million euro surcharge in intensive care

treatments over the investigated period (March 19th - May 25th).

1All authors are affiliated to the Barcelona Graduate School of Economics. Contact details: hu-
bert.massoni@barcelonagse.eu. Authors thank Larbi Alaoui, Gianmarco León and Sergio Pirla Lopez
for their insightful guidance and comments throughout the preparation of this study.
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I. Introduction

The Covid-19 pandemic, to date having taken the lives of over 376,000 people around

the world, is the most severe public health crisis since the Spanish flu of 1918. Con-

trolling the transmission of the deadly virus has required an all-out response from

policymakers, resulting in nationwide ‘lockdowns’ and the closure of all non-essential

sectors of economic activity. France has been heavily affected, with its regions suffering

to varying degrees of affliction. Départements, sub-regional administrative areas, have

faced drastic differences in human and healthcare costs as a result of the pandemic, to

the point where some local healthcare systems have threatened to break down. There-

fore, understanding the drivers of more acute Covid-19 prognoses across affected areas

is crucial in assessing and controlling the epidemiological crisis.

Severe cases of Covid-19 are characterised by symptoms such as respiratory distress

or other vital organ failure, which require the use of a ventilator or the admission to

intensive care units (ICU) (Zu et al. 2020; CDC 2020). So far, noted sources of indi-

vidual vulnerability include age (≥60), sex (male), ethnicity (Black, Asian), obesity,

diabetes, immunocompromise, smoking, severe heart conditions, chronic lung disease

and asthma (BMJ 2020; WHO 2020; Brandt, Beck, and Mersha 2020). Within the

sources of increased vulnerability, an underlying factor of many is prolonged exposure

to fine particulate matter, or PM2.5, defined as atmospheric pollution containing minute

particles smaller than 2.5 micrometres in diameter. PM2.5 pollution can contain harm-

ful solids which lead to serious health conditions, such as respiratory and cardiovascular

illnesses, which increase vulnerability to infectious diseases and elevates mortality risk.

In this paper, we provide evidence that long-term exposure to PM2.5 worsens the symp-

toms and prognosis of Covid-19 patients.

Our central hypothesis of adverse health effects of long-term exposure to air pollu-

tion, is grounded in a plethora of existing biomedical and epidemiological literature.
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In a review of European epidemiological studies, Pelucchi et al. (2009) highlight that

overall mortality is exacerbated by long-term exposure to PM2.5 and other PM mea-

sures. Excesses in pollution-associ,ated mortality are thought to be driven by increased

risk for an array of diseases, such as cardiovascular, ischemic heart, and respiratory

diseases (Dockery et al. 1993; Pope III et al. 2002; Henschel and Chan 2013; Beelen,

Raaschou-Nielsen, et al. 2014). Perhaps most compellingly, Cui et al. (2003) found that

rates of mortality during the SARS virus outbreak - another closely related coronavirus

- of 2002 were positively associated with exposure to air pollution in China. There

seems to be a wide consensus on the adverse effects of air pollution on human health,

and vulnerability to chronic and infectious diseases.

As the pandemic has unfolded, many researchers have observed a correlation between

air pollution and local ‘hotspots’ of Covid-19 deaths. Ogen (2020), finds significant

correlations between NO2 concentrations and abnormal spikes in death counts. Setti et

al. (2020) provide evidence that areas of increased PM10 particulate matter saw higher

rates of infections.2 Conticini, Frediani, and Caro (2020) conclude that higher levels

of PM2.5 and PM10 correlate strongly with higher mortality rates. All three studies

examine the case of Italy, specifically Lombardy, which was the first European region

to experience the outbreak of the virus.3

In a recent epidemiological study, X. Wu et al. (2020) quantify the effect of expo-

sure to air pollution on the number of Covid-19 deaths in US counties, and establish

air pollution as a key environmental risk factor. They find that a one-unit increase in

PM2.5 (µg/m3) is associated with an 8% increase in the Covid-19 death rate, controlling

for a wide range of socioeconomic and behavioural factors.

2Where PM10 is particulate matter smaller than 10 micrometers.

3Although running parallel to our discussion, the present study does not address the phenomenon of
reductions in global air pollution following enforced lockdowns and diminishing economic activity, as
in Dutheil, Baker, and Navel (2020).
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We perform a similar analysis, but in a setting which favours the empirical strategy,

hopefully allowing for cleaner causal inference. We present our results in the language

and context of health and environmental economics. As a novel contribution, we extend

the analysis to other measures of severity of Covid-19 symptoms, namely admissions to

intensive care units and admissions to hospitals. We use the latter two results to provide

tangible estimates of the direct health and economic costs of the pandemic associated

with pollution. This paper is - to our knowledge - the only empirical investigation into

the causal effect of long-term exposure to PM2.5 air pollution on Covid-19 deaths and

hospitalisations in Europe.

Ultimately, we find that a one-unit increase in long-term PM2.5 concentrations is as-

sociated with a 22% increase in the Covid-19 mortality rate (deaths over population),

an 11% increase in admissions to ICU and a 14% increase in admissions to hospitals,

across a sample of 96 départements in France. In real terms, these ’marginal costs of

pollution’ represented on average 61 excess deaths and roughly 1 million euros in excess

intensive care costs since March 19th. We adjust estimates for the marginal mortality

effect by accounting for under-reporting in Covid-19 death counts.

The following section introduces the case of France in the Covid-19 crisis. Section

3 presents the data collection and the rationale behind the inclusion of confounding

factors. Section 4 describes our main empirical strategy and robustness checks. We

present our results in section 5. Section 6 comprises a discussion of the results and

their potential limitations, with an extended discussion on under-reporting of deaths,

and finally an estimate of the healthcare costs of pollution. Section 7 concludes. All

tables and figures are included in the appendix.
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II. Background: France facing the pandemic

We choose to work within the borders of metropolitan France to avoid differences in

reporting methods and other qualitative inconsistencies which could not reasonably be

controlled for. Conticini, Frediani, and Caro (2020) find that differences in reporting

and count methods account for large differences in mortality rates, so we hope to min-

imise these. As we write the present work, data collection is imperfect and the degree

of accuracy varies greatly between countries.

As of the 25th May 2020, 182,942 Covid-19 cases were confirmed, although inconsis-

tencies in the testing and reporting methods shed doubts on the accuracy of these

numbers, which might be largely under-estimated. France reported 28,432 Covid-19-

related deaths, from which 18,405 were reported in hospitals. North-eastern France and

the greater Paris area were the first areas affected by the virus, and are consequentially

the worst affected (Figure 1). Hospitals in these broad regions have constantly reported

financial and material shortages.

As of March 17th, 2020, a nation-wide ‘lockdown’ has been implemented across all

départements to counter the surge in Covid-19 cases. In contrast to the varied state-

level approaches taken in the United States, the lockdown was uniform across the

country, where stay-at-home orders and restriction of movement were strictly enforced.

Only key sectors remained active, such as agriculture, construction and healthcare.

France, moreover, displays high spatial variability in levels of air pollution. The in-

dustrial north and north-eastern regions, as well as the greater Paris area, display the

highest concentrations of atmospheric PM2.5, as illustrated by Figure 1. Visual inspec-

tion already indicates that regions with higher pollution exposure have been relatively

more affected by the pandemic.
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III. Data

Our study investigates the relationship between long-term PM2.5 concentrations and

Covid-19 related deaths, hospitalisations and admissions to ICU. These three indicators

inform on the impact of pollution on different degrees of severity of Covid-19 symp-

toms. Data is gathered at the départemental level – an administrative sub-regional

division of metropolitan France. This creates 96 individual observations in our sample,

representing the entire population of metropolitan France (including Corsica). Table 1

provides summary statistics on dependent and independent variables.

i. Covid-19 data

We obtained data on confirmed Covid-19 cases from Santé Publique France (National

Agency of Public Health), provided on a daily basis since March 19th 2020. Data

is reported by hospitals and frequently updated for reporting errors. We collect the

cumulative Covid-related number of deaths, admissions to intensive care units and

admissions to hospitals up to and including the 25th of May 2020 at the départemental

level. It should be noted that the data does not account for the total number of Covid-

related deaths in France, since Santé Publique does not report disaggregated data on

deaths in nursing or private homes. We comment on this issue in the discussion section.

ii. Pollution data

We obtained temporally averaged annual PM2.5 concentrations from the NASA Socioe-

conomic Data and Applications Center. This dataset combines aerosol optical depth

(AOD) retrievals from multiple satellite instruments. The GEOS-Chem chemical trans-

port model is used to account for weather factors, then data is gridded at the 0.01x0.01-

degree resolution, implying one km2 pixels (Donkelaar et al. 2019). For context, the

median land area of a département is 5,965 km2. These annual values are averaged

across the period 2000-2016, then départemental averages are calculated by comput-
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ing mean concentrations for all latitude/longitude combinations in a département. We

define these averages as the long-term exposure to pollution of each département’s

inhabitants.

iii. Confounding factors

To better isolate the role of long-term pollution exposure in the prevalence of strong

Covid-19 symptoms, we control for 18 confounding factors, distinguished in 6 classes

(a detailed list of sources can be found in Table 7):

(i) Socio-economic characteristics: median income, poverty rate and share of dispos-

able income from wealth. (ii) Demographic characteristics: the share of people above 65

years of age and the male share of the population. (iii) Healthcare capacity: the number

of doctors per 100,000 inhabitants and the number of hospital beds used for Covid-19

patients.4 (iv) Health and behavioural characteristics capturing existing health risks

and sources of vulnerability: smoking, obesity and diabetes rates. (v) Weather factors

affecting pollution levels and Covid-19 spread: average rain fall (mm/year) and average

temperature (◦C) over the 2016-2018 period.5 (vi) Factors influencing the spread of

the virus: Covid-19 infections are naturally the most important predictor of Covid-19

fatalities. Without reliable test data, we must rely on additional factors that accelerate

or slow the propagation of the virus. Close contact is a precursor of its contagion so

we include population density, proportion of overcrowded residential apartments and

the share of the labour force who continue to work in non-confined sectors. We include

inter-départemental migration around the implementation date of the lockdown (circa

17th of March), proxied by inter-département cell phone movements, as data shows an

overall migration out of densely populated areas into less populated areas. If not taken

into account, these migration movements may bias our estimates, given that the popu-

4We exclude beds used for cardiology and neuro-vascular care given that only reanimation and general
medicine beds are used to treat Covid-19 cases in France.

5Weather factors are found to influence the transmission of Covid-19 (Ma et al. 2020).
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lation exposed to long term pollution in cities would migrate and contract the virus in

rural areas, which are arguably less polluted. For completeness, we include the number

of positive tests in cities as a measure of the state of the epidemic in each département

- although biased given different urbanisation characteristics. Finally, we compute the

number of days before the 50th case admitted to hospital as an additional measure of

the state of the epidemic in each départements. Available data does not allow us to

compute the exact day of the 1st case, hence the use of this specification - which will

be the basis for additional robustness checks.

IV. Empirical strategy

Our main goal is to estimate the impact of long-term exposure to pollution on the

mortality rate, the admission to ICU rate and the admission to hospital rate. We de-

fined long-term pollution exposure as the annual average of estimated concentrations

of PM2.5 over the 2000-2016 period. Mortality, ICU and hospital rates are the total

count of each variable, divided by the département’s population (per 100,000).

We fit a cross-sectional mixed effect negative binomial model (MENB) with random

intercept using PM2.5 as the explanatory variable and the Covid-related rates as the

dependent variables. We control for 18 possible confounding factors, and run 24 sec-

ondary regressions and sensitivity analyses per dependent variable, to examine the

robustness of our model to various specifications.

i. Model

The nature of the dependent variables, namely count data, is a call for caution in

causal inference, as it usually follows a non-normal distribution. A preferred choice for

explaining variability in counts is a distributional assumption belonging to the Poisson

log-linear family (Booth et al. 2003). In addition, the Covid-19 data presents strong
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signs of over-dispersion, illustrated in Table 2. Whilst a Poisson distribution has its

mean equal to its variance, the data displays variances greater than means. This feature

of the data is found across départements with both low and high levels of pollution.

We instead assume a negative binomial distribution, which is more appropriate to deal

with overdispersed data (Booth et al. 2003).6

Another concern stemming from the data is the potential spatial correlation of errors.

Hospitals and healthcare services in France are mostly regulated and administered at

the regional level. The response to the pandemic and the institutional capacities to man-

age patients are likely to share similar characteristics across départements belonging to

the same region. Furthermore, air pollution is extremely likely to show autocorrelation

across neighbouring départements (Gautam, Teraiya, and Patra 2018). A typical solu-

tion would involve adding spatial lags, or allowing for spatial dependence in the residual

term. However, the negative binomial model cannot have an endogenous spatial lag, as

the distribution is not stable. Subsequently when modelling Poisson-distributed count

data, different techniques are required (Mohebbi, Wolfe, and Jolley 2011). We there-

fore follow one of the recommended methods of Arora and Brown (1977) and include

a random intercept at the regional level (13 groups) to capture regional heterogeneity

in administrative response to the pandemic. This is also a reasonable approximation of

spatial correlation in pollution and in the spread of Covid-19.

We, therefore, fit a mixed effect negative binomial model (MENB), defined as follows:

log(yi) = zTi bi + xTi β + log(populationi) + ri (1)

where yi ∼ NB (yi|µi, θ) and i is the département index, bi is the random intercept

vector, where bi ∼ NK(0,Ψ). xi is a vector of explanatory variables and β is estimated

by maximum likelihood. Region identifiers zi introduce spatial dependence of counts

6The negative binomial distribution is defined as: yi ∼ NB (yi|µi, θ) = Γ(yi+θ)
Γ(θ)yi!

·
(

θ
µi+θ

)θ
·
(

µi

µi+θ

)yi
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and ri is a Pearson residual. The model is adjusted for 18 covariates and includes a

population size (per 100,000) exposure.

Under this specification, dependent variables are transformed to rates: dependent vari-

able over population (per 100,000). Our empirical strategy hence informs about the

mortality, admission to ICU and to hospital rates. Estimates from the MENB models

- exponentiated MENB coefficients - are interpreted as Incidence Rate Ratios (IRR): a

percentage increase in the dependent variable rate resulting from one-unit increase in

an independent variable.

ii. Robustness checks

The risk of over-fitting, the use of count data and limited sample size raise concerns

over the robustness of the findings to changes in specifications, modelling choices and

assumptions (notably distributional). We first run 7 secondary analyses for each of our

three dependent variables to confirm the magnitude and significance of the estimate of

interest when removing potential confounders - so that our main results are not biased

by over-controlling. These include the removal of different covariate groups: healthcare

capacities, tests performed in cities, pre-existing health conditions, weather conditions

and Covid-19 spread channels. A last secondary analysis removes the hot spots of the

epidemic in France (the 5 highest death counts), to confirm that the results are not

driven by outliers (mainly, the region Ile-de-France, including Paris) which suffer from

a very high number of Covid-19 cases. This particular specification notably alleviates

possible bias stemming from the way we defined the start of the epidemic. Given that

we defined the variable as the day when a département reaches 50 cases admitted to

hospital, several départements were attributed a similar start date - the very first day

included in the data. Removing hot spots palliates possible bias embedded in our mea-

sure of the start of the epidemic by representing cross-départemental differences more

accurately in the epidemic outbreak.
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Second, we perform a set of sensitivity analyses with alternative specifications and

assumptions. These include (i) MENB with clustered standard errors at the regional

level, (ii) PM2.5 estimation as quintiles, (iii) density of population as quintiles, (iv)

more disaggregated and progressive age categories, (v) including the natural logarithm

of population as a covariate. In addition, to cross-check the results of the MENB mod-

els under different distributional assumptions, we estimate the effect of the long-term

pollution exposure on the natural logarithm of the Covid-19 rates by OLS. We use

spatially correlated standard errors up to a 200km radius, and perform comparable sec-

ondary and sensitivity analyses. Although more standard in causal inference analyses

of this kind in economics, OLS is not our favoured specification given the possible bias

when dealing with count data (Cameron and Trivedi 2003). Our OLS model is defined

as follows:

yi = β0 + xTi β1 + εi (2)

where yi is our dependent variable and xi is a vector of explanatory variables, as listed

before. Also, εi ∼ N(0, σ2 + Ĉ(k)), Ĉ(k) estimates spatial covariances at distance k.

V. Results

Main analyses

Of the départements in our sample, all 96 had reported at least one death by the time of

our analysis. We analyse cumulative death, admission to ICU and admission to hospital

tolls up to May 25th, 2020, expressed in respective rates per départemental population

size (per 100,000).7

7It is to be noted that the likelihood ratio test of negative binomial vis-à-vis Poisson regression and the
likelihood ratio test of negative binomial with random intercept vis-à-vis without random intercept
are both significant. This indicates respectively over-dispersion and intra-regional correlation of errors
and confirms the model specifications.
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Table 3 reports the results of our main specification. Regarding the mortality rate,

we find an estimated IRR of 1.22 on PM2.5 (95% CI: [1.10; 1.36]), statistically highly

significant at the 0.1% level. Regarding the admission to ICU rate, we find an esti-

mated IRR of 1.11 on PM2.5 (95% CI: [1.01; 1.22]), statistically significant at the 5%

level. Regarding the hospitalisation rate, we find an estimated IRR of 1.14 (95% CI:

[1.05; 1.25]), statistically significant at the 1% level. That is, our results suggest that

a one-unit increase in long-term average PM2.5 (µg/m3) is associated with an average

increase of 22% in the Covid-19 death rate, 11% in the admission to ICU rate and 14%

in the admission to hospital rate in France.

Meanwhile, we find that the share of the population aged above 60 years, the male

share of the population and rates of diabetes are positive determinants of all three

dependent variables (significant at the 5% level or less). These results are consistent

with previous research into risk factors for Covid-19 patients, particularly with findings

regarding age and sex differences in mortality rates (BMJ 2020; WHO 2020). We also

find significant positive coefficients for median income, but sensitivity analyses cast

doubts on causality (see discussion section). Finally, we find that a strong predictor of

all three measures is the start date of the epidemic, which highlights that areas which

were first hit by the pandemic are worse affected. This is intuitive, the longer the virus

is allowed to spread, the greater the number of infections and fatalities in a population.

Secondary and sensitivity analyses

Importantly, these findings are consistent with results from 24 secondary and sensitiv-

ity analyses (per dependent variable, all reported in Table 4 and 5). Figure 2 displays

the robustness of our coefficient of interest and respective confidence intervals to sec-

ondary analyses, in which we separately omitted groups of covariates or observations

with higher mortality rates. Secondary analyses confirm the magnitude of the effect of

long-term pollution on mortality, admission to ICU and admission to hospital rate, with

an IRR ranging between 1.17-1.31 for the mortality rate, 1.04-1.16 for the admission to
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ICU rate and 1.09-1.21 for the admission to hospital rate across 8 specifications.

We report in Table 4 and 5 the IRR and confidence intervals obtained from the sensitiv-

ity analyses, including a set of alternative OLS specifications with spatially correlated

standard errors, up to a radius of 200km. Sensitivity analyses are consistent with our

main findings, and OLS estimates are notably extremely similar to MENB estimates,

with the primary specification obtaining an eβ of 1.22.

VI. Discussion

i. Determining causality

Our results and their robustness to different specifications show that there is a clear

association between PM2.5 concentrations and Covid-19 outcomes. We hypothesize,

based on scientific empirical work such as Pelucchi et al. (2009) and Lim et al. (2012),

that long-term exposure to air pollution damages respiratory health, making a patient

more vulnerable to Covid-19 and therefore more likely to exhibit more acute symptoms

of the disease. This channel of influence is supported by a wide scientific consensus,

which, combined with the robustness of our results, allows us to infer a causal rela-

tionship between long-term exposure to air pollution and Covid-19 outcomes in France,

and likely elsewhere.

Furthermore, our findings are consistent in magnitude with Wu et. al. (2020) and

Cui et al. (2003) regarding respectively Covid-19 patients in the US, and SARS pa-

tients in China, although we find a larger mortality IRR of 1.22 than findings of 1.08

by Wu et. al., 2020. We believe France offers a cleaner setting to the study, due to

its uniform lockdown and broad exposure to the virus. Our model also echoes recent

results from the BMJ (2020) and WHO (2020), finding statistically significant effects

of demographic factors such as age and sex, and of underlying health conditions (dia-
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betes). We also note that areas which recorded 50 cases earlier in the year see higher

mortality rates and more severe symptoms.

However, we find that log median household income is extremely positively associ-

ated with mortality, ICU admission and hospital admission rates (IRR of 2.91, 15.69,

17.18 respectively) and the latter two coefficients are statistically significant at the 5%

level. Whilst this appears troubling, this does not necessarily imply that wealthier indi-

viduals are likely to suffer more greatly. Instead, wealthier départements are centres of

economic activity, host many more visitors and returning citizens from abroad, and are

densely populated. These dynamics accelerate the spread of the virus and therefore its

cumulative impact. In fact, when Paris - the economic center and primary recipient of

foreign visitors in the country - is excluded from the sample, we observe a negative co-

efficient on log income. The result is not robust to any of our sensitivity analyses, either.

There may exist alternative channels of influence which can explain our result. One

such theory is that air pollution increases airborne transmission of the virus, whereby

atmospheric particulate matter is able to ’carry’ the virus and aid its propagation. In

their own evaluation of the negative impacts of air pollution on the Covid-19 pandemic,

Setti et al. (2020) remark that rates of infection were also far higher in areas of higher

pollution. We support the view that present-day air pollution may aid the transmission

of the virus. However, we stress that our study is unrelated to their hypothesis, given

that we use historic pollution data which precedes the pandemic.

We must also consider the possibility of external factors, which may create a ’spu-

rious regression’. In controlling for 18 potential confounders, we hope to exhaust the

list of possible influences. Our estimates are broadly in line with findings in the USA

and from previous pandemics, so we hope that we have succeeded in integrating all

potential confounding factors.
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Given the robustness of our results, their concordance with other existing empirical

findings, and the strength of our hypothesised channel of influence, we believe there

is strong reason to infer a causal relationship. Our study is not without limitations,

however, which future research should hope to evade.

ii. Limitations

Observational issues

Whilst we maintain that limiting the scope of our study to continental France improves

the precision of our results, as doing so controls for potential inconsistencies which may

occur in a cross-border study, it comes at the cost of a small sample size (maximum of

96 possible observations). Estimates from the MENB are asymptotically unbiased, so

greater sample size will improve the accuracy of results (Davis and R. Wu 2009). Sec-

ondly, when using spatial data such as air pollution, results can vary according to the

scale of aggregation (Crouse et al. 2019). A quick robustness check is to change the level

of aggregation of data and re-estimate the model. However, in our case, we can only

increase the level of aggregation to the regional level, which permits 12 observations,

unlikely to have the statistical power to validate our results. Low observation count also

prevents us from performing quintile analysis of our variable of interest to investigate

the hypothesis of linear relationship between pollution and Covid-19 outcomes, as each

quintile of our sample contains only about 20 observations.

Exposure Model

Using satellite-measured PM2.5 data is an imprecise estimate for actual exposure to

ambient air PM2.5. One method is the use of exposure models, which are unavailable

for PM2.5 in Europe and tend to focus on NO2 instead (Beelen, Hoek, et al. 2013; Vien-

neau, Hoogh, and Briggs 2009). Ideally, we would use ground-level monitoring stations

as our data source, but unfortunately, such data does not properly cover the territory.
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Data issues

The reliability of the hospital and infection data is a possible cause for concern. In-

fection data only represents tests performed in cities, while we will show the official

death count is likely to vastly underestimate the true figures (see extended discussion).

Secondly, our model does not include ethnicity data which is proven to greatly affect

mortality rates (Brandt, Beck, and Mersha 2020).8 However, the authors argue the

‘ethnicity’ effect is captured in large part by socioeconomic factors such as income,

lower access to healthcare capacities and employment in non-confined economic sec-

tors, which we are able to control for.

Hence, we acknowledge that our results could be more informative at a larger scale, and

that a low number of observations may be a limiting factor to the success of our inves-

tigation. A larger scale study could improve the reliability and external validity of our

estimates. Unfortunately, this is not possible until data regarding Covid-19 deaths and

infections are more reliable and consistent across different countries. The weakness of

Covid-19-related data is a consequence of its novelty. Once such data is consistent and

accurate, future work should replicate our methods in neighbouring European countries,

and further afield, in order to develop a comprehensive understanding for the area.

iii. Extended discussion on estimating pollution impacts

In this section we attempt to provide estimations of the Covid-19-related human and

financial costs associated with long-term pollution exposure. Our findings so far inform

on the marginal Covid-19 effects of pollution, but we seek to understand how these

translate to tangible costs over the investigated period.

Death reporting

The rapid spread of the pandemic has revealed national statistic agencies to be ill-

8France does not allow collection of data based on race or ethnicity, even at the aggregated level.
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equipped to deal with accurately tracking case and death counts. Before April 4th,

Santé Publique France had been reporting solely deaths occurring in hospitals, without

taking into account deaths in pension and private homes. Therefore, any attempt to

quantify the effect of pollution on Covid-19 deaths, beyond marginal effects, is likely to

be severely biased downward.

We follow Chopin (2020) and propose a simple procedure to calculate the true number

of Covid-19-related deaths. We take advantage of data provided by INSEE during the

pandemic, which reports the départemental total death counts from all causes from

early 2018 to today (Figure 3). We calculate excess deaths by subtracting the aver-

age 2018-2019 weekly death counts from the 2020 weekly death count in each French

département. We regress excess deaths reported from the 19th of March to the 11th of

May, 2020 on Covid-19 deaths reported in hospitals. Weekly data are more stable than

daily data and less affected by delays in the statistical reporting procedures.9 We use

panel data and estimate the following model:

ex−dit = β0 + β1hosp−dit + εit

Where ex−dit represents excess deaths in département i at time t, hosp−dit is number

of deaths in hospitals in département i at time t and εit is the error term. We use

clustered standard errors at the regional level to account for differences in reporting

quality (Table 6).

We find a positive relationship between the number of hospital deaths and excess deaths

(Figure 4). The model yields a coefficient of 1.69 (95% CI: [1.62, 1.75]), statistically

highly significant at 0.1% level, implying that any death count reported by hospi-

tals should be augmented by 62-75% to take into account under-reporting of Covid-19

deaths. Although overly simple, we hope this method informs on the magnitude of

9INSEE reports weekend deaths on the following Monday.
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the discrepancy between deaths reported by hospitals and the estimated total Covid-19

deaths. An ideal study of long-term exposure to pollution would be based on more

accurate mortality data.

Nevertheless, using this estimate to adjust for under-reporting, we attempt to assess

how many additional Covid-19 deaths can be attributed to higher air pollution since

the outbreak of the pandemic. We do so by multiplying the average Covid-19-related

mortality rate in hospitals across France by our estimated marginal increase in the

death rate (22%), multiplying by the average département population (per 100,000)

and then multiplying by the coefficient estimated in the above regression (1.69) - full

calculations are in the Appendix.

We obtain that a one-unit increase in long-term PM2.5 level (µg/m3) resulted on average

in 61 additional Covid-19 deaths per département since March 19th.10 Repeating this

method for ICU and hospital admissions, we predict marginal increases of 15 and 131

respective admissions owing to this one-unit increase and over the investigated period.11

For context, a standard deviation of pollution concentrations equates to a 2.4 µg/m3

change in PM2.5.

Cost estimation

In order to emphasize the economic costs of air pollution whilst Covid-19 is in the

spotlight, we attempt to provide a conservative estimate of the cost of ICU responses

– crucial defence mechanisms against pandemics of respiratory diseases. Assistance

publique-Hôpitaux de Paris estimates the daily cost for ICU treatment to be e4,658

per day (AP-HP 2019). Furthermore, Grasselli et al. (2020) estimate the average stay

of patients in ICU to be 14 days. We hence estimate the Covid-19-cost of air pollution

10With a lower bound and an upper bound of 27 and 103, respectively. For context, in-hospital
Covid-19 deaths average 192 per département.

11With lower and upper bounds of (1.4, 31) for ICU and (47, 234) for hospital admissions.
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by multiplying the daily cost by the average number of days spent in an ICU, and mul-

tiplying again by the estimate of the increased number of ICU admissions attributable

to one additional unit of PM2.5 - see calculations in Appendix. We obtain that the

marginal cost of a one-unit increase in PM2.5 has been e1,007,895, purely in terms of

intensive care treatments and since March 19th.12

This method is crude. However, the provided estimates are likely a lower bound to

the true current cost of Covid-19 on the healthcare system. We had hoped to estimate

the costs of treatment for less-severe hospitalisations, but providing a central estimate

is made difficult by extreme variability in treatment costs, since duration of stay and

severity of symptoms differ significantly from patient to patient.

That said, our base estimate should alert policymakers and highlight air pollution as

a costly surcharge associated with the pandemic. Air pollution is a well-documented

negative externality which here has direct social costs (both in human and financial

terms). If overlooked as a risk factor, or under-estimated due to Covid-19 outcomes

reporting errors, air pollution can lead to misallocation of resources within France’s

public health system and failures in the optimisation of the response to the pandemic.

In turn, this may lead to a greater number of deaths and severe cases, especially when

considering a gradual re-opening of the economy following the lockdown.

VII. Conclusion

The present study is a strong indication that air pollution is a crucial environmental

factor in mortality risks and vulnerability to Covid-19. The health risks associated

with air pollution are well documented, but with Covid-19 in the spotlight we hope to

increase awareness of the threat caused by pollution, not only through direct increased

12With lower and upper bounds of e90,438 and e1,989,635, respectively. The lower bound is driven
by a small lower bound of the IRR for ICU admissions.
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health risks, but also through external factors, such as pandemics.

We show the aggravating effect of long-term pollution exposure to three levels of sever-

ity of Covid-19 symptoms in France: admission to hospitals for acute Covid-19 cases,

admission to intensive care units for the most severe vital organ failures, and fatalities

(all expressed per 100,000 inhabitants). Using cross-sectional data at the départemental

level, we fit mixed effect negative binomial models with the three Covid-19 measures

as dependent variables and the average level of atmospheric concentration of PM2.5

(µg/m3) as an explanatory variable. We adjust for a set of 18 potential confounders to

isolate the role of pollution in the spread of the Covid-19 disease across départements.

We find that a one-unit increase in average PM2.5 levels increases on average the mor-

tality rate by 22%, the admission to ICU rate by 11% and the admission to hospital

rate by 14%. These results are robust to a set of 24 secondary and sensitivity analyses

per dependent variable, confirming the consistency of the findings across a wide range

of specifications.

We further provide numerical - and hence more tangible - estimates of the marginal

costs of pollution since March 19th. Adjusting for under-reporting of Covid-19 deaths,

we estimate that long-term exposure to pollution marginally resulted in an average 61

deaths across French départements. Moreover, based on average daily costs of inten-

sive care treatments, we estimate that pollution induced an average 1 million euros in

costs borne by hospitals treating severe symptoms of Covid-19. These figures strongly

suggest that areas with greater air pollution faced substantially higher casualties and

costs in hospital services, and raise concerns about misallocation of resources to the

healthcare system in more polluted areas.

Our paper provides precise estimates and a reproducible model for future work, but

is limited by the novelty of the phenomenon at the center of the study. Our empirical

investigation is restricted to the scope of France alone due to cross-border inconsis-
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tencies in Covid-19 data collection and reporting. Once Covid-19 data reporting is

complete and consistent, we hope future studies will examine the effects of air pollution

at a greater scale, or in greater detail. On the other hand, more disaggregated data

- at the individual or hospital level - would allow more precise estimates and a better

understanding of key factors of Covid-19 health risks and would also allow the use of

surface-measured air pollution. Measured pollution data is available for France, but is

inherently biased when aggregated at the départemental level, due to lack of territorial

coverage.

If precise data tracking periodic Covid-19 deaths becomes available for a wider geo-

graphic region, we specifically recommend a MENB panel regression incorporating a

PCFE for spatially correlated errors. This will produce the most accurate estimates.

Going forward, more accurate and granular data should motivate future research to

uncover the exact financial costs attributable to air pollution during the pandemic.

Precise estimation of costs of Covid-19 treatments and equipment (e.g. basic protective

equipment for personnel or resuscitation equipment), should feature in a more accurate

cost analysis. Hospital responses should be thoroughly analysed to understand the true

cost of treatments across all units.

It is crucial that the healthcare costs of pollution are globally recognised so that future

policy decisions take them into account. Ultimately, this paper stresses that failure to

manage and improve ambient air quality in the long run only magnifies future burdens

on healthcare resources, and cause more damage to human life. During a global pan-

demic, the costs of permitting further air pollution appears ever more salient.
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VIII. Appendix

Figure 1: Départemental-level Covid-19 rates and pollution concentration

(a) Atmospheric PM2.5 Concentrations (b) Covid-19 Deaths

(c) ICU Admissions (d) Hospital Admissions
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Table 1: Summary Statistics

Mean Std. Dev. Min. Max.

Covid-19 Counts

Deaths 191.7 286.2 1 1691

Admissions to intensive care unit 179.6 291.0 2 2056

Admissions to hospital 1105.3 1575.2 24 8871

Covid-19 Rates

Mortality rate (per 100,000) 24.2 23.3 1.31 124.2

Admission to intensive care unit rate (per 100,000) 20.5 16.7 2.62 95.7

Admission to hospital rate (per 100,000) 138.5 111.1 20.6 515.3

Pollution

Average PM2.5 (µg/m3) 9.91 2.40 5.95 16.1

Demographic Characteristics

Population (100,000) 6.76 5.20 0.76 25.9

% ≥ 60 years of age 29.6 4.83 16.7 39.3

% Men 48.5 0.49 47.0 49.6

Socio-economic Characteristics

Median household income (e) 20780.4 1616.7 17310 27400

% In poverty 8.13 1.97 5 17.5

% Wealth in disposable income 9.75 1.93 5.90 19.6

Healthcare Capacity

Doctors (per 100,000) 305.0 89.3 167 858

Hospital beds (per 100,000) 17.9 7.75 4.33 38.0

Covid-19 Spread Channels

Tests (in cities, per 100,000) 520.2 453.3 0 2623.7

Population density (person/m2) 565.8 2425.1 14.8 20459.7

% Inter-dep. migration 0.21 6.15 -38 7

% Over-crowed flat 5.61 4.92 1.80 30.9

% Non-confined sectors 10.3 2.91 1.50 19.3

Days before 50 cases in hospitals 8.15 7.05 1 40

Weather Factors

Average rain fall (mm/year) 1167.4 214.3 795.5 1772.5

Average temperature (C) 11.9 1.63 7.25 16.1

Health Factors

% Smoking 27.7 2.94 21.3 32.2

% Diabetic 4.39 0.67 2.84 6.94

% Obese 5.63 4.53 0.50 18.5

Observations 96
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Table 2: Overdispersion in Covid-19 counts

Mortality ICU Hospital

Mean Variance Mean Variance Mean Variance

Average PM2.5 (µg/m3)
1st half 63.2 7153.8 76.0 11391.0 76.0 11391.0
2nd half 320.2 124734.6 283.2 137800.2 283.2 137800.2
Total 191.7 81933.4 179.6 84659.3 179.6 84659.3

Observations 96 96 96

Note: Death, admission to ICU and admission to hospital counts, reported by hospitals (19/03 to

25/05). Data is presented by 1s & 2nd halfs of average PM2.5 levels (threshold at 9.91 µg/m).

24



Table 3: Main Analyses

Mixed Effect Negative Binomial Regressions

Variables Mortality ICU Hospital

Average PM2.5 (µg/m3) 1.22∗∗∗ (0.07) 1.11∗ (0.05) 1.14∗∗ (0.05)
% ≥ 60 years of age 1.12∗∗∗ (0.02) 1.05∗ (0.02) 1.09∗∗∗ (0.02)
% Men 1.87∗∗∗ (0.27) 1.45∗∗ (0.18) 1.85∗∗∗ (0.22)
Doctors (per 100,000) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Hospital beds (per 100,000) 1.01 (0.01) 1.03∗∗∗ (0.01) 1.02∗ (0.01)
Tests (in cities, per 100,000) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Population density (person/km2) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
% Inter-dep. migration 1.01 (0.01) 1.00 (0.01) 1.00 (0.01)
% Over-crowed flat 1.03 (0.02) 1.00 (0.02) 1.01 (0.02)
% Non-confined sectors 0.99 (0.03) 1.03 (0.03) 1.03 (0.03)
Days before 50 cases in hospitals 0.94∗∗∗ (0.01) 0.97∗∗∗ (0.01) 0.95∗∗∗ (0.01)
log(Median household income) 2.91 (4.83) 15.69∗ (21.80) 17.18∗ (23.32)
% In poverty 0.96 (0.06) 1.06 (0.06) 1.03 (0.06)
% Wealth in disposable income 1.03 (0.03) 1.01 (0.02) 1.01 (0.02)
Average rain fall (mm/year) 1.00 (0.00) 1.00 (0.00) 1.00 (0.00)
Average temperature (C) 0.95 (0.05) 1.02 (0.04) 0.99 (0.04)
% Smoking 0.99 (0.03) 1.00 (0.03) 1.01 (0.03)
% Diabetic 1.39∗ (0.22) 1.36∗ (0.19) 1.42∗∗ (0.18)
% Obese 1.02 (0.02) 1.02 (0.02) 1.03 (0.02)

log(α) 0.11∗∗∗ (0.02) 0.08∗∗∗ (0.02) 0.08∗∗∗ (0.01)
Random intercept (region) 1.03 (0.02) 1.03 (0.02) 1.02 (0.02)

Exposure Population Population Population
Observations 92 92 92

Exponentiated coefficients (IRR); Standard errors in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Incidence Rate Ratios (eβ) and standard errors for all variables on the mortality rate, the
admission to ICU rate and the admission to hospital rate. The IRR can be interpreted as a percent
increase in the dependent rates resulting from a one-unit increase in the explanatory variable. Negative
binomial models include a random intercept at the regional level (12 groups). Log(α) is a coefficient
of dispersion of the data with respect to a Poisson distribution.
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Figure 2: MENB Secondary analyses, PM2.5 estimates and 95% CI

(a) Mortality

(b) Admission to ICU

(c) Admission to hospitals

Note: Incidence Rate Ratios and 95% confidence intervals for Mixed Effect Negative Binomial mod-
els (main analyses). The panels display the exponentiated estimates of average PM2.5 levels on (a)
mortality rate, (b) admission to ICU rate, (c) admission to hospital rate. The IRR can be interpreted
as a percent increase in the rates (a), (b) or (c) resulting from a one-unit increase in µg/m3 of PM2.5.
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Table 4: Sensitivity analyses, PM2.5 estimates

Dependent variable: Mortality rate

MENB OLS

Specifications eβ 95% CI eβ 95% CI

Main analysis 1.22∗∗∗ [1.10 1.36] 1.22∗∗ [1.07 1.39]
Omit healthcare capacity 1.17∗∗ [1.05 1.30] 1.17∗ [1.04 1.31]
Omit # tested 1.21∗∗∗ [1.09 1.35] 1.21∗∗ [1.07 1.37]
Omit start epidemy 1.31∗∗∗ [1.14 1.49] 1.39∗∗∗ [1.19 1.62]
Omit health factors 1.27∗∗∗ [1.15 1.39] 1.29∗∗∗ [1.19 1.40]
Omit weather 1.24∗∗∗ [1.12 1.37] 1.25∗∗∗ [1.15 1.36]
Omit Covid-19 spread 1.21∗∗∗ [1.11 1.32] 1.21∗∗∗ [1.08 1.34]
Exclude hot spots 1.20∗∗ [1.07 1.34] 1.20∗ [1.04 1.39]
PM2.5 as quintile 1.22∗ [1.05 1.42] 1.25∗ [1.01 1.54]
Density as quintile 1.20∗∗∗ [1.09 1.31] 1.19∗∗ [1.06 1.34]
Disaggregated age 1.22∗∗∗ [1.09 1.36] 1.22∗∗ [1.05 1.41]
Log(population) as covariate 1.18∗∗∗ [1.07 1.30] - -

Clustered S.E. (region) 1.21∗ [1.04 1.41] 1.22∗ [1.01 1.47]

Dependent variable: Admission to ICU rate

MENB OLS

Specifications eβ 95% CI eβ 95% CI

Main analysis 1.11∗ [1.01 1.22] 1.11∗ [1.01 1.23]
Omit healthcare capacity 1.04 [0.95 1.15] 1.05 [0.95 1.16]
Omit # tested 1.11∗ [1.01 1.22] 1.11∗ [1.01 1.23]
Omit start epidemy 1.15∗∗ [1.04 1.28] 1.19∗∗ [1.06 1.33]
Omit health factors 1.16∗∗∗ [1.07 1.26] 1.18∗∗∗ [1.10 1.26]
Omit weather 1.09∗ [1.01 1.20] 1.11∗∗ [1.04 1.19]
Omit Covid-19 spread 1.07∗ [1.02 1.18] 1.09∗ [1.01 1.18]
Exclude hot spots 1.08 [0.98 1.19] 1.09 [0.98 1.21]
PM2.5 as quintile 1.09 [0.96 1.24] 1.13 [0.96 1.33]
Density as quintile 1.11∗∗ [1.03 1.20] 1.11∗∗ [1.03 1.19]
Disaggregated age 1.12∗ [1.02 1.23] 1.12∗ [1.01 1.24]
Log(population) as covariate 1.09∗ [1.00 1.21] - -

Clustered S.E. (region) 1.09∗ [1.00 1.20] 1.11∗ [1.00 1.24]
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Table 5: Sensitivity analyses, PM2.5 estimates (continued)

Dependent variable: Admission to hospital rate

MENB OLS

Specifications eβ 95% CI eβ 95% CI

Main analysis 1.14∗∗ [1.05 1.25] 1.14∗ [1.03 1.26]
Omit healthcare capacity 1.09∗ [1.00 1.19] 1.09 [0.99 1.20]
Omit # tested 1.14∗∗ [1.04 1.24] 1.13∗ [1.02 1.25]
Omit start epidemy 1.21∗∗ [1.08 1.35] 1.25∗∗∗ [1.11 1.41]
Omit health factors 1.21∗∗∗ [1.12 1.31] 1.23∗∗∗ [1.16 1.31]
Omit weather 1.15∗∗∗ [1.06 1.25] 1.16∗∗∗ [1.11 1.22]
Omit Covid-19 spread 1.13∗∗∗ [1.05 1.22] 1.13∗∗ [1.03 1.23]
Exclude hot spots 1.12∗ [1.02 1.23] 1.12∗ [1.00 1.24]
PM2.5 as quintile 1.18∗∗ [1.04 1.33] 1.19∗ [1.02 1.39]
Density as quintile 1.13∗∗∗ [1.05 1.22] 1.13∗∗ [1.03 1.23]
Disaggregated age 1.13∗∗ [1.03 1.23] 1.13∗ [1.01 1.26]
Log(population) as covariate 1.12∗∗ [1.03 1.21] - -

Clustered S.E. (region) 1.14∗ [1.02 1.27] 1.14 [0.99 1.31]

Exponentiated coefficients; 95% confidence intervals in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Exponentiated estimates of average PM2.5 (µg/m3) levels (to be interpreted as Indicence Rate
Ratios for MENB). Negative binomial regressions (MENB) include random intercept at the regional
level, OLS regressions use Conley S.E. with radius 200km (except when ”clustered” is specified).

Figure 3: Daily deaths trends

Note: Data obtained from INSEE (from March 1st to May 11th), which has been reporting the
number of deaths per day per département on a weekly basis. In addition, for comparison, they have
also been reporting the same data for years 2018 and 2019.
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Figure 4: Excess deaths and hospital deaths

Note: This figure shows pairs of data points for excess deaths and hospital deaths with respective
densities, from March 19th to May 11th. The upward slope indicates correlation between hospital
deaths and non-reported Covid-19 deaths. The data has been obtained from INSEE, as in Figure 3.

Table 6: Mortality Under-reporting

Excess deaths

Coeff. Std. Err. 95% CI

Hospital Deaths 1.69∗∗∗ 0.036 [1.62 1.76]
Constant -1.22∗∗∗ 0.17 [-1.55 -0.90]

Observations 96
Periods 8

Clustered standard errors reported (13 regions), 95% confidence intervals in brackets
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Note: Estimates computed using pooled OLS with département level data for the cross-sectional
dimension and weekly data for the time series dimension. We cluster at regional level to account for
intra-regional correlation within broad administrative boundaries.
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Calculations of marginal increases for deaths, ICU and hospital admissions.

yc =

(
1

N

N∑
i=1

countsi
populationi

· 100, 000

)
·(IRRc − 1) ·

(
1

N

N∑
i=1

populationi

)
·100, 000−1 ·γc

With c = counts = {1, 2, 3} and 1 = deaths, 2 = ICU admissions, 3 = hospital admis-

sions. Furthermore, countsi represents the number of units by département, β is the

IRR coefficient from our MENB regressions and γ = 1.69 if c = 1 and γ = 1 if c = 2, 3

(γ is the under-reporting ratio calculated from our regression).
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Table 7: Data and sources

Category Variables Source

Socio-economic
characteristics

Median income (e, 2017), poverty rate (2017),
share of disposable income from wealth (2016).

INSEE

Covid-19 outcomes (i) Covid-19-related deaths, admissions to ICU
and admissions to hospital counts ( March
19th to May 25th, 2020); (ii) Total deaths,
all causes (2018-2020, March 1st to May 11th)

(i) Santé Publique;
(ii) INSEE

PM2.5 (µg/m3) 0.01◦×0.01◦ grid resolution PM2.5 predic-
tion (averaged across grid cells in each
département, 2000–2016).

SEDAC

Demographics Population (2020), age (2020) and male share
of the population (2020).

INSEE

Healthcare Quality Number of doctors, number of hospital beds
(per 100,000 inhabitants, 2018).

DREES

Health Factors (i) Diabete (2012) and smoking (2017) preva-
lence; (ii) obesity rate (regional level, 2017).

(i) Santé Publique;
(ii) ObEpi-Roche

Weather Factors Yearly average rain fall (mm/year, 2016-2018)
and average temperature (◦C, 2016-2018)

Météo France

Spread Factors (i) Tests (in cities, March 19th to May
25th, 2020), days before 50 cases in hos-
pitals; (ii) Population density (person/m2,
2020), share of inter-départemental migra-
tion (March 16th-17th 2020), share of over-
crowded flats (2016), share on non-confined
sectors (employed population, 2018)

(i) Santé Publique;
(ii) INSEE
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https://sedac.ciesin.columbia.edu/
https://insee.fr/fr/statistiques
https://drees.solidarites-sante.gouv.fr/etudes-et-statistiques/
https://www.santepubliquefrance.fr/
https://www.roche.fr/content/dam/rochexx/roche-fr/roche_france/fr_FR/doc/obepi_2012.pdf
http://www.meteofrance.com/climat
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