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Abstract

Vector autoregression (VAR) models are a popular choice for forecasting of macroe-
conomic time series data. Due to their simplicity and success at modelling the mon-
etary economic indicators VARs have become a standard tool for central bankers to
construct economic forecasts. Impulse response functions can be readily retrieved and
are used extensively to investigate the monetary transmission mechanism. In light of
the recent advancements in computational power and the development of advanced
machine learning and deep learning algorithms we propose a simple way to integrate
these tools into the VAR framework. This paper aims to contribute to the time series
literature by introducing a ground-breaking methodology which we refer to as Deep
Vector Autoregression (Deep VAR). By fitting each equation of the VAR system with
a deep neural network, the Deep VAR outperfroms the VAR in terms of in-sample
fit, out-of-sample fit and point forecasting accuracy. In particular, we find that the
Deep VAR is able to better capture the structural economic changes during periods of
uncertainty and recession.
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1 Introduction

As stated by the European Central Bank, the monetary transmission mechanism is the process
through which monetary policy decisions affect the economy in general and the price level in partic-
ular. Uncertainty with respect to this transmission is generally huge, given that it is characterized
by long, variable and uncertain dependencies through time and variables. Hence, it is typically
challenging to predict how changes in monetary policy actions affect real economic outcomes. It is
therefore of foremost importance for policy-makers to use adequate tools to model the underlying
mechanisms.

With this in mind, a lot of research on the forecasting of time series has been developed to assess
the effect of current policy decisions on future economic variables. Thanks to this, over the last
decades policy makers have had more information when taking decisions. This information usually
comes in the form of point estimates and interval forecasts. To come up with these estimates,
several methodologies have been developed and applied in the time series forecasting literature.

At the time of writing, one the most common methodologies to produce these estimates is the
so-called Vector Autoregression (VAR). This framework, which belongs to the traditional toolkit
of econometric forecasting techniques, has been shown to provide policy-makers with fairly good
and consistent point and interval estimates. It has therefore been used extensively in the monetary
policy divisions of central banks.

Simultaneously, with the recent advancements in computational power, and more importantly, the
development of advanced machine learning algorithms and deep learning, interesting novel tools
have become available that may be useful for forecasting time series. Whereas the good performance
of techniques such as VAR is well established, it is still uncertain whether deep learning algorithms
can be applied successfully to macroeconomic data.

To this end, this paper contributes a new and ground-breaking methodology that combines the
VAR equation-by-equation structure with deep learning. We provide evidence that this improves
the model’s capacity to capture potentially highly non-linear relationships in the underlying data
generating process. The primary objective of this paper is to develop a methodology that pro-
duces improved modelling outcomes while deviating as little as possible from the established VAR
framework, thereby keeping things straight-forward and familiar to economists. We show that
the existing VAR methodology can be easily extended to the broader class of Deep VAR models
and provide solid empirical evidence that Deep VARs consistently outperform the conventional
approach.

To the best of our knowledge, this is the first paper to propose a Deep VAR framework of this
structure, namely, to fit a deep neural network for each equation of the VAR process. Although
previous work has explored the use of deep learning to forecast macroeconomic time series, previous
proposed methodologies deviate more from the conventional VAR framework. For example, Ver-
styuk (2020) chooses to model the whole system through one unified deep neural network. We find
that the equation-by-equation approach not only helps to maintain interpretability and simplicity,
but also appears to produce better modelling outcomes. To enable researchers and practitioners to
easily implement our proposed methodology, we have developed a unified framework for estimating
Deep VARs in R and plan to continue its development going forward.

We find that the Deep VAR methodology outperforms the traditional VAR framework in terms
of in-sample and out-of-sample fit as well as with respect to forecasting accuracy. In particular,
the Deep VAR appears to be better at capturing non-linear dynamics underlying the time series
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process. It therefore leads to consistently lower modelling errors than the VAR, especially during
periods of economic downturn and uncertainty.

Arguably policy makers are not only interested in the forecasting accuracy of the model, but are
typically also concerned with inference. For example, central banks are often interested in know-
ing to what extent interest rates granger cause other variables within the monetary transmission
mechanism. Another aspect policy makers and researchers care about is how the variables of the
system evolve through time in response to innovations. This information is typically recovered
using Impulse Response Functions (IRFs). The linear additive modelling assumption underlying
the conventional VAR makes inference straight-forward. In the case of Deep VARs inference is ar-
guably more complicated, though promising avenues have recently been explored (Verstyuk 2020).
We believe that the methodology proposed in this paper can be relatively easily augmented to the
inference realm in future work.

The remainder of the paper is structured as follows: in section 2 we present a literature review of
prior research on the methodologies used to provide forecasts and on the monetary transmission
mechanism in general. Section 3 provides a detailed description of the data we use for our empirical
exercises. In section 4 we present the traditional VAR methodology and develop our proposed Deep
VAR model. Sections 5 and 6 present our empirical findings and possible extensions and caveats,
respectively. Finally, section 7 concludes.

2 Literature review

There is broad agreement among economists on the fact that monetary policy affects economic
activity in the short and medium term. Friedman and Schwartz (2008) found that monetary policy
actions are followed by movements in real output that may last for two years or more (Romer
and Romer (1989); Bernanke (1990)). The underlying forces that trigger these outcomes is of
great interest to most economists. Central bankers in particular aim to understand the monetary
transmission mechanism. If monetary policy affects the real economy, then what exactly is the
transmission mechanism through which these effects occur? This is one of the questions which is
among the most important and controversial topics in modern-day macroeconomics.

In the aftermath of the oil price shock in the 1970’s, interest emerged in understanding business
cycles. To this end economists initially made use of large-scale macroeconomic models, which was
criticized by Lucas Jr (1976), stating that the assumption of invariant behavioural equations was
inconsistent with dynamic maximizing behaviour. Hence, New Classical economists started to
make use of so-called market clearing models of economic fluctuations. With the goal of really
taking into account productivity shocks, Real Business Cycle models were developed (Kydland
and Prescott (1982)).

Following the failure of large-scale macroeconomic models when trying to predict business cycles, the
economic profession resorted to structural vector autoregressive (VAR) models to analyse business
cycles, which proved to be useful for capturing the impact of policy actions. Sims and others
(1986) suggested that VARs were an efficient tool to evaluate macroeconomic models. One of the
advantages of VARs is their simplicity, which makes it easy to estimate and interpret them.

Yet, this simplicity comes at a cost: conventional VARs are typically not able to capture non-linear
relationships in the data, which might be a significant limitation. In the very short run many
time series can be expected to behave more or less according to their past and a linear model may



be efficient to capture dynamics, but for longer term dependencies this is typically not the case.
With respect to the economic time series that form part of the monetary transmission mechanism,
specifically output, inflation, interest rates and labour market variables, non-linear dependencies
are likely to form part of the data generating process as shown by Brock et al. (1991). This is true
in particular during times of abrupt and significant economic fluctuations.

During past years, economists have therefore started to add non-linear techniques to their forecast-
ing tool kit. Machine Learning has contributed a lot to this field of research. Some of the most
popular machine learning techniques which do not assume a linear relationship between inputs and
outputs include K-Nearest Neighbours (first introduced by Fix and Hodges (1951)), Support Vector
Machines (mostly developed by Cortes and Vapnik (1995)), Random Forests (first introduced in
1995 by Ho (1995)) and Deep Artificial Neural Networks (first proposed in 1943 by McCulloch
and Pitts (1990)). The latter have been explored previously in the realm of time series forecasting
(Hamzagebi (2008), G. P. Zhang (2003), Kihoro, Otieno, and Wafula (2004)). Neural networks
are non-parametric models that have been shown to be particularly successful at capturing non-
linearities (G. Zhang, Patuwo, and Hu (1998), G. P. Zhang (2003)).

A particular subclass of neural networks used primarily for sequential data are recurrent neural
networks (RNN). RNNs propagate previous outputs recursively allowing the model to learn per-
sistent dependencies and thereby making them very efficient for time series data (Dorffner 1996).
A recent staff working paper published by the Bank of England provides some empirical support
for the argument that deep learning can be successfully applied to macroeconomic data (Joseph
et al. 2021). The authors run a horse race for forecasting inflation across different time horizons
comparing the performance of linear and non-linear models. They find that neural networks in par-
ticular and also other common machine learning algorithms are useful for forecasting particularly
at a longer horizon.

3 Data

To evaluate our proposed methodology empirically we use a sample of monthly US data on leading
economic indicators, which spans the period of January 1959 through March 2021. We use the
relatively novel FRED-MD data base which is updated monthly and publicly available (McCracken
and Ng 2016). The sample spans from marzo, 1959 to marzo, 2021 providing us with a relatively
rich data set of macroeconomic time series with 1" = 745 observations.

In order to investigate the monetary transmission mechanism, the literature typically focuses on
variables related to economic output, price levels, short and long term interest rates as well as labour
market indicators. Some go beyond to also include stock price indices, money and credit aggregates,
balance of payments figures, confidence indicators and some cases foreign domestic indicators. In
this paper we limit our attention to the four main indicators mentioned above. In particular we use
changes in the industrial production index (IP) to measure output growth, changes in the growth
of the (all items) consumer price index (CPI) to measure inflation, the Federal Funds Rate (FFR)
as our interest rate and the unemployment rate (UR) as our labour market indicator. Note that
we use IP rather than the gross domestic product as a proxy for output, because the latter is only
available at quarterly frequency.

Another strength of the FRED-MD is the fact that the data is already preprocessed. Specifically,
the industrial production index comes in log differences, the CPI in second-order log differences and



both the Fed Funds Rate and the unemployment rate in first-order differences. This has allowed us
to let the data enter into our estimations without any further adjustments, which should facilitate
the reproducibility of our results.

4 Methodology

In conventional Vector Autoregression (VAR) dependencies of any system variable on past real-
izations of itself and its covariates are modelled through linear equations. This corresponds to a
particular case of the broader class of Deep Vector Autoregressions investigated here and will serve
as the baseline for our analysis.

4.1 Vector Autoregression

Let y; denote the (K x 1) vector of variables at time ¢. Then the VAR(p) with p lags and a constant
deterministic term is simply a linear system of stochastic equations of the following form:

yi=c+Ayr 1 +Asys o+ ... +Apyr p+wy (1)

The matrices A,, € REXK where m € {1,...,p}, contain the reduced form coefficients and u; €
RE>1 is a vector of errors for which Eus, Euu} = ¥ and Eusul = 0 for all t # s. We refer to
(1) as the reduced form representation of the VAR(p) because all right-hand side variables are
predetermined (Kilian and Liitkepohl 2017).

We can restate (1) more compactly as

yi=AZ; 1 +wy (2)

where A = (c,A1, Ay, .., A,) € REXEPH) and 7,y = (Lyl,, ...yl )T € REPFDXL The
expression in (2) demonstrates that the VAR(p) can be considered as a seemingly unrelated
regression (SUR) model composed of individual regressions with common regressors (Greene
2012). In fact, it is useful to note for our purposes that the VAR(p) can be estimated efficiently
through equation-by-equation OLS regression. In particular, it follows from (2) that

K

P
Yit = ¢ + Z Zajmyjt_m +uyy , Vi=1,..,.K (3)
m=1j=1

which corresponds to the key modelling assumption that at any point in time ¢ any time series
i1 €1,..., K is just a weighted sum of past realizations of itself and all other variables in the system.
This assumption makes the estimation of VAR(p) processes remarkably simple. Perhaps more
importantly, the assumption of linearity also greatly facilitates inference about VARs.

For implementation purposes it is generally more useful to estimate the VAR(p) through one single
OLS regression. To this end let A = AT and note that (2) can be restated even more compactly as

y =ZA +u, (4)
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with y = (y1,...,y7)7 € RT*K and Z € RT*(KP+D) " Then the closed form solution for OLS is
simply A = (Z7Z)7'Z"y and hence

A =yTz(zZ")! (5)

4.2 Deep Vector Autoregression

We propose the term Deep Vector Autoregression to refer to the broad class of Vector Autoregressive
models that use deep learning to model the dependences between system variables through time.
In particular, as before, we let y; denote the (K x 1) vector that describes the state of system
at time ¢. Consistent with the conventional VAR structure we assume that each individual time
series y;; can be modelled as a function of lagged realizations of all variables y;;—,, 7 = 1,..., K,
m =1,...,p. More specifically, we have

Yit = fi (Vi-1:0—p;0) +vie , Vi=1,. K (6)
wherey; 1.4—p = {yjt_m};”jlllg is the vector of lagged realizations, f; is a variable specific mapping
from past lags to the present and 6 is a vector of parameters. While in the conventional VAR above
we assumed that the multivariate process can be modelled as a system of linear stochastic equations,
our proposed Deep VAR(p) can similarly be understood as a system of potentially highly non-linear
equations. As we argued earlier, Deep Learning has been shown to be remarkably successful at
learning mappings of arbitrary functional forms (Goodfellow, Bengio, and Courville 2016).

Note that the input and output dimensions in (6) are exactly the same as in the conventional
VAR(p) model (equation (3)): f; maps from y;—1.4—, € REPX! to a scalar. Our proposed plain-
vanilla approach to Deep VARs diverges as little as possible from the conventional approach: it
boils down to simply modelling each of the univariate outcomes in (6) as a deep neural network.
We can restate this approach more compactly as

Vi =f(yi—14—p; 0) + V¢ (7)

where £(-) = (f1(-), f2(-), ..., fr(:))T € REX1 is just the stacked vector of mappings to univariate
outcomes described in (6).

The notation in (7) gives rise to a more unified and general approach to Deep VARs that would
treat the whole process as one single dynamical system to be modelled through one deep neural
network g;:

Yt = g(yt—l:t—p; 0) + v (8)

This approach is in fact proposed and investigated by Verstyuk (2020) in his upcoming publication.
We decided to go with the approach in (7) for two reasons: firstly, the link to conventional VARs
is made abundantly clear through this implementation and, secondly, we found that the equation-
by-equation approach produces good modelling outcomes and is relatively easy to implement using
state-of-the art software.



Finally, note that if f; in (3) is assumed to be linear and additive for all ¢ = 1, ..., K then we are
back to the conventional VAR(p). This illustrates the point we made earlier that the linear VAR(p)
is just a particular case of a Deep VAR(p). Since the model described in equations (6) and (7) is
less restrictive but otherwise consistent with the conventional VAR framework, we expect that it
outperforms the traditional approach towards modelling multivariate time series processes.

4.3 Deep Neural Networks - a whistle-stop tour

So far we have been speaking about deep learning in rather general terms. For example, above we
have referred to our model of choice for learning the mapping f; : yt—1.t—p — yir as a deep neural
network. The class of deep neural networks can further be roughly divided into feedforward
neural networks and recurrent neural networks. As the term suggests, the latter is generally
used for sequential data and therefore our preferred model of choice. Nonetheless, below we will
begin by briefly exploring feedforward neural networks first. This should serve as a good introduc-
tion to neural networks more generally and (even though we have not tested this empirically) there
is good reason to believe that even Deep VARs using feedforward neural networks perform well.

4.3.1 Deep Feedforward Neural Networks

The term deep feedforward neural network or multilayer perceptron (MLP) is used to
describe a broad class of models that are composed of possibly many functions that together make
up the directed acyclical graph. The functions f;(-) - sometimes referred as layers h; - are chained
together hierarchically with the first layer feeding forward its outputs to the second layer and so
on (Goodfellow, Bengio, and Courville 2016). Applied to our case, an MLP with H hidden layers
can be loosely defined as follows:

fiye-rpi0) = £ (FV (Y ier)) ) (9)

The depth of the MLP is defined by the number of hidden layers H, where, generally speaking,
deeper networks are more complex.

)

The desired outputs of any fl-(h) that will serve as inputs for fl-(h+1 cannot be inferred from the

training data y;—1.4—p ex-ante, which is where the term hidden layer stems from. Each fi(h)

is typically valued on a vector of hidden units, each of them receiving a vector of inputs from
h-1)

f(

S and returning a scalar that is referred to as activation value. This approach is inspired by

neuroscience, hence the term neural network (Goodfellow, Bengio, and Courville 2016).

4.3.2 Deep Recurrent Neural Networks

Recurrent neural networks (RNN) are based on the idea of persistent learning: a continuous
process that evolves gradually and at each step uses information about its prior states instead of
continuously reinventing itself and starting from scratch. To this end, RNNs develop the basic
concepts underlying feedforward neural networks by incorporating feedback loops. Formally the
loop is typically made explicit as follows



h; = f(ht—l,Xt; 9) (10)

where h; € RY*! corresponds to the hidden state of the dynamical system at time ¢ that the
RNN learns (Goodfellow, Bengio, and Courville 2016), and N corresponds to the number of hidden
units in each hidden layer, known as the width of the layer. In the given context we have that
Xt = Yi—1:4—p as specified in (7). Given some random initial hidden state vector hy the RNN
updates parameters sequentially at each time step t as follows

a;=b+ Wh,_; + Uh_,
h; = tanh(a¢) (11)
¥t =c+ Vhy

where b € RV*! and ¢ € RX*! are vectors of constants (biases), tanh is the hyperbolic tangent
activation function and W, U, V are coefficient matrices, where W, U € RV*N and V € REXN,
Note that to simplify the notation we have omitted the layer index in (11): to be specific, h; really

represents th) (the ultimate hidden layer), h_; stands for h,EHfl) (the penultimate layer). Finally,

at each step t the first layer hgo) of the forward propagation corresponds to y¢—1.¢—p.

A shortfall of generic recurrent neural networks is that they fail to capture long-term dependencies.
More specifically, if parameters are propagated over too many stages in a simple RNN, it typically
suffers from the problem of vanishing gradients (Goodfellow, Bengio, and Courville 2016). For-
tunately, there exist effective extensions of the RNN, most notably the long short-term memory
(LSTM), which was introduced by Hochreiter and Schmidhuber (1997) and is our model of choice
for Deep VARs. The key idea underlying LSTMs is to regulate exactly how much information is
propagated from one cell state vector C;_1 to the next C; through the introduction of so called
sigmoid gates:

“The LSTM [has] the ability to remove or add information to the cell state, carefully
regulated by structures called gates. Gates are a way to optionally let information
through.” — Olah (2015)

These regulating gate layers include a forget gate f;, an input gate i; and a output gate o;.
Each of them are vector-values sigmoid functions whose elements fj;,1i;+, 0;+ are bound between 0
and 1. Their individual purposes are implied by their names: faced with h;_; and y;_1.—p, the
forget gate regulates how much of each individual unit in C;_; is retained. Then the input gate
regulates which units of C;_;1 should be updated and to what candidate values Ci_1. Using the
previous two steps the actual update is performed according to the following rule

C,=f,0C_1+1;® Ct—l (12)

where ® indicates the element-wise product. Finally, the output gate acts like a filter on C;: the
new hidden state is computed as hy = o; ® tanh(C;) where as before we use the hyperbolic tangent
as our activation function.! Formally, we can summarize the LSTM neural network underlying our
Deep VAR framework as follows:

!For a clear and detailed exposition see Olah (2015).



fi=0(bf+Wsh;_1 +Ush_)
ip=0(b;+ W;h;_1 + Uh_4)
o =0 (bo+ Wohy—1 +Ush_;)
C, =1 ©Ciq1+1i ®tanh (bec + Wehy_1 + Uch_;)
h; = o; ® tanh(Cy)
y:=c+ Vh

which is best understood when read from top to bottom. Once again we have simplified the notation
by omitting the layer index in (11). The same notation as before applies.

4.4 Model selection

There are at least two important modelling choices to be made in the context of conventional
VARs. The first choice concerns properties of the time series data itself, in particular the order
of integration and cointegration. The second choice is about the the lag order p. In order to
arrive at appropriate decisions regarding these choices the VAR literature provides a set of guiding
principles. We propose to apply these same principles to the Deep VAR, firstly because they are
intuitive and simple and secondly because treating both models equally to begin with allows for a
better comparison of the two models at the subsequent modelling stages.

4.4.1 Stationarity

When working with time series we are generally concerned about stationarity. Broadly speaking
stationarity ensures that the future is like the past and hence any predictions we make based on
past data adequately describe future outcomes. In order to state stationarity conditions in the
VAR context it is convenient to restate the K-dimensional VAR(p) process in companion form as

C U
0 0

Yi=|.|+AY1+ | | (14)
0 0

where Y; = (y/, ...,ytTpr)T e REPXL and A € REPXED i referred to as the companion matrix
(Kilian and Liitkepohl 2017). Stationarity of the VAR(p) follows from stability: a VAR(p) is stable
if the effects of shocks to the system eventually die out. Stability can be assessed through the
system’s autoregressive roots or equivalently by looking at the eigenvalues of the companion matrix
A (Kilian and Liitkepohl 2017). In particular, for the VAR(p) in (14) to be stable we condition
that the Kp eigenvalues A\ that satisfy

det(A — Mg,) =0

are all of absolute value less than one. Stability implies that the first and second moments of the
VAR(p) process are time-invariant, hence ensuring weak stationarity (Kilian and Liitkepohl 2017).



A straight-forward way to deal with stationarity of VARs is to simply ensure that the individual time
series entering the system are stationary. This usually involves differencing the time series until they
are stationary: for any time series y; that is integrated of order I(9), there exists a §-order difference
that is stationary. An immediate drawback of this approach is the loss of information contained
in the levels of the time series. Modelling approaches that take into account conintegration of
individual time series can ensure system stationarity and still let individually non-stationary time
series enter the system in levels (Hamilton 1994).

4.4.2 Lag order

The VARs lag order p can to some extent be thought of as the persistency of the process: past
innovations that still affect outcomes in time ¢ happened at most p periods ago. From a pure model
selection perspective we can also think of additional lags in terms of additional regressors that add
to the model’s complexity. From that perspective, choosing a lower lag order corresponds to a form
of regularization as it pertains to a more parsimonious model.

Various strategies have been proposed to estimate the true or optimal lag order p empirically
(Kilian and Liitkepohl 2017). Among the most common ones are sequential testing procedures
and selection based on information criteria. The former involves sequentially adding or removing
lags - bottom-up and top-down testing, respectively - and then testing model outcomes in each
iteration. A common point of criticism of sequential procedures is that the order tests matters
(Litkepohl (2005)).

Here we will focus on selection based on information criteria, which to some extent makes the
trade-off between bias an variance explicit (Kilian and Liitkepohl 2017). In particular, it generally
involves minimizing information criteria of the following form

C(m) = log(det(3(m))) + £(m) (15)

where 3 is just the sample estimate of the covariance matrix or errors and £ is a loss function that
penalizes high lag orders. In particular, we have that our best estimate of the optimal lag order p
is simply

p = arg nr?el% C(m) (16)

where P = [Mmyin, Mmax|. We will consider all of the most common functional choices for (15).

4.4.3 Neural Network Architecture

By now it should be clear that deep neural networks come in many shapes and sizes. When thinking
about the architecture of a neural network many different design choices can be made and networks
can thus be tailored to specific use cases. Here, we intend to keep things simple and vary only the

depth and width of the LSTMs underlying the Deep VAR. The number of hidden units per hidden
layer is held constant across layers.

Figure 1 illustrates the network architecture for the case of two lags (p = 2) and four variables
(K =4). We can see that the first layer corresponds to the inputs, that is, the input layer € REPx1,



This architecture consists of H = 2 hidden layers each counting fourteen hidden units. Given that
we are aiming at predicting four variables the output layer consists of four units. The edges illustrate
the flow of information of the network, where each edge has an associated weight.

With respect to network compilation, the popular Adam optimization algorithm is used (Kingma
and Ba 2014). This algorithm can be used instead of the more traditional stochastic gradient descent
to update network weights. There are several reasons to use this algorithm that are particularly ap-
pealing, among them its straightforward implementation and its computationally efficiency. Adam
distinguishes itself from classic stochastic gradient descent in that it uses adaptive learning rates.
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Figure 1: Neural Network Architecture.

As mentioned above, the estimation of deep neural networks involves a very large number of param-
eters and hence regularization is an important concern. One way to mitigate the risk of overfitting
is to choose a neural network architecture that is neither excessively wide nor deep. Another way to
regularize the neural network is to use the fact that optimization at the training phase is stochastic.
One greedy way to reduce overfitting risk is therefore to simply retrain the network multiple times
and then average over the obtained parameter estimates and predictions (Srivastava et al. 2014).
While theoretically appealing, this approach is computationally prohibitive. Instead, another layer
of stochasticity can be introduced at the training stage through dropout: at each training itera-
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tion and each stage of the forward propagation a share of the hidden units is simply dropped at
random. This approach mimics the idea of repeated training. Dropout adds noise into the model
and thereby avoids that hidden layers try to adapt to a mistake made by previous hidden layers.

5 Empirical results

We now proceed to benchmark the proposed Deep VAR model against the conventional VAR
using out macroeconomic time series data. To begin with, we compare both models in terms of
their in-sample fit. For this part of the analysis the models will be strictly run under the same
framing conditions. Due to the RNN’s capacity to essentially model any possible function f;(-)
the Deep VAR dominates the VAR in this realm. We investigate during what time periods the
outperformance of the Deep VAR is particularly striking to gain a better understanding of when
and why it pays off to relax the linearity constraint.

These findings with respect to in-sample performance provide some initial evidence in favor of
the Deep VAR. But since a reduction in modelling bias is typically associated with an increase in
variance, we are particularly interested in benchmarking the models with respect to their out-of-
sample performance. To this end we split our sample into train and test subsamples. We then
firstly benchmark the models in terms of their pseudo out-of-sample fit. Finally we also look at
model performance with respect to n-step ahead pseudo out-of-sample forecasts.

The final part of this section relaxes the constraint on the framing conditions. In particular, we
investigate how hyperparameter tuning with respect to the neural network architecture and lag
length p can improve the performance of the Deep VAR.

5.1 In-sample fit

For this first empirical exercise both models are trained on the full sample. We have decided to
include the post-Covid sample period despite the associated structural break, since it serves as
interesting point of comparison. The optimal lag order as determined by the Akaike Information
Criterium is p = 6, where we used a maximum possible lag of pp.x = 12 corresponding to one year.
A look at the eigenvalues of the companion matrix showed that the VAR(6) is stable. The LSTMs
underlying the Deep VAR model are composed of H = 2 that count N = 100 hidden units each.
The dropout rate is set to p = 0.5.

To assess the fit of our models we use the root mean squared error (RMSE) as our preferred
loss function. Figure 2 shows the cumulative RMSE of both the VAR model and Deep VAR
model for each of the time series over the whole sample period. The first thing we can observe
is that the RMSE of the Deep VAR is consistently flatter than the RMSE of the VAR. With
respect to in-sample performance, the Deep VAR the VAR throughout the entire time period of
the experimental analysis and for all of the considered variables. This empirical observation seems
to confirm our expectation that the vector autoregressive process is characterized by important
non-linear dependencies across time and variables that the conventional VAR fails to capture.

Figure 2 is especially useful to asses in which specific periods the Deep VAR model achieves better
modelling outcomes than the VAR model. From the very beginning and across variables, we
observe that the increase in cumulative loss for the VAR model is greater than for the Deep VAR
model. The US economy during 1960s was influence by John F. Kennedy’s introduction of New
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Figure 2: Comparison of cumulative loss over the entire sample period for conventional VAR
and proposed Deep VAR.
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Economics, which was informed by Keynesian ideas and characterized by increasing levels of
inflation, a reduction in unemployment and output growth. The change in government certainly
corresponded to a regime switch with respect to the economy (Perry and Tobin 2010) and in that
sense it is interesting to observe that the Deep VAR appears to be doing a better job at capturing
the underlying changes. The 1970s can be broadly thought of as a continuation of New Economics
and loosely defined as a period of stagflation. The Deep VAR continues to outperform the VAR
during that period.

The first truly interesting development we can observe in Figure 2 coincides with the onset of the
Volcker disinflation period. Following years of sustained CPI growth, Paul Volcker set the Federal
Reserve on course for a series of interest rate hikes as soon as he became chairperson of the central
bank in August 1979. The shift in monetary policy triggered fundamental changes to the US
economy and in particular the key economic indicators we are analyzing here throughout the 1980s
(Goodfriend and King 2005). Despite this structural break, the increase in the cumulative RMSE
of the Deep VAR remains almost constant during this decade for most variables. The performance
of the VAR on the other hand is unsurprisingly poor over the same period, in particularly so for
the CPI and the Fed Funds Rate, which arguably were the two variables most directly affected by
the change in policy. The Deep VAR also clearly dominates the VAR with respect to the output
related variables (IP) and to a lesser extent unemployment. These findings indicate that changes to
the monetary transmission mechanism in response to sudden policy shifts are not well captured by
a linear-additive vector autoregressive model. Instead they appear to unfold in a high-dimensional
latent state space, which the Deep VAR by its very construction is designed to learn.

Following the Volcker disinflation period, Figure 2 does not reveal any clear outperformance of
either of the models during the 1990s. Interestingly the dot-com bubble has little affect on either of
the models, aside from a small pick-up in cumulative loss with respect to the CPI for both models.
With all that noted, the Deep VAR still continuously outperforms the VAR since evidently its
cumulative loss increases at a lower pace altoghether.

As the Global Financial Crisis unfolds around 2007 the pattern we observed for the Volcker disin-
flation reemerges, albeit to a lesser extent: there is a marked jump in the difference between the
cumulative loss of the VAR and the Deep VAR, in particular so for the CPI, the Fed Funds rate and
industrial production. The gap for all these variables continues to widen during the aftermath of
the crisis. The Deep VAR once again does a better job at modelling the changes that the dynamical
system undergoes: post-crisis US monetary policy was characterized by very low interest rates, low
levels of inflation as well as the introduction of a range of non-conventional monetary policy tools
including quantitative easing and forward guidance.

Finally, it is also interesting to observe how both models perform in response to the unprecedented
exogenous shock that Covid-19 constitutes. Both models incur huge errors with respect to both
IP and UR - the two series most significantly affected by Covid. Evidently though, the magnitude
of the errors is somewhat larger for the VAR than for the Deep VAR. This, once again seems
to confirm our hypothesis that the Deep VAR model captures important non-linear dependencies
across time and variables that the conventional VAR fails to capture.

As a sanity check we also visually inspected the distributional properties of the model residuals for
the full-sample fit. The outcomes are broadly consistent across models: while for some variables
residuals are clearly not Gaussian, we see no evidence of serial autocorrelation of residuals (see
Figures 5 and 6 in the appendix).
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Table 1: Root mean squared error (RMSE) for the two models across subsamples and vari-
ables.

Sample | Variable | DVAR VAR | Ratio (DVAR / VAR)
test IP 0.00608 | 0.01484 0.40957
test UR 0.97022 | 1.65170 0.58741
test CPI 0.00273 | 0.00342 0.79869
test FFR 0.19964 | 0.23974 0.83271
train IP 0.00528 | 0.00727 0.72610
train UR 0.32325 | 0.43322 0.74615
train CPI 0.00149 | 0.00232 0.64019
train FFR 0.16115 | 0.25780 0.62509

5.2 Out-of-sample fit

In order to assess if the Deep VAR’s outperformance is a consequence of overfitting, we now repeat
the previous exercise, but this time we train the models on a subsample of our date. The training
sample spans from marzo, 1959 to octubre, 2008, whereas the test data goes from noviembre, 2008
to marzo, 2021. This corresponds to training the model on 80 percent of the data and retaining
the remaining 20 percent for testing purposes. The optimal lag order for the training subsample is
p = 7 where we use the same criterion and maximum lag order as before. Once again we find this
VAR specification to be stable.

Tables 1 shows the Root Mean Squared Error (RMSE) for the in-sample and the out-of-sample
predictions of both the VAR model and the Deep VAR model. We can see that the RMSE for the
Deep VAR outperforms the one for the conventional VAR for both the training data and the test
data and for all time series. The fifth column of the table shows us the ratio between the RMSEs of
the Deep VAR and the VAR: the lower the ratio, the better the Deep VAR compared to the VAR.
With respect to the training sample, the RMSE of the Deep VAR model is consistently less than
75% of that of the conventional VAR reflecting to some extent the results of the previous sections.
Turning to the test data, there is no evidence that the Deep VAR is more prone to overfitting than
the VAR. For both industrial production and unemployment, the Deep VAR yields an RMSE that
is around half the size of that produced by the VAR. For inflation and interest rate predictions the
outperformance on the test data is less striking, but still fairly significant.

5.3 Forecasts

Up until now we have been assessing the 1-step ahead predictions of both models. In our context
these predictions can be thought of as 1-month ahead nowcasts from a practical perspective. Since
real-time nowcasts have grown in popularity during recent years, the results so far should be of
great interest to central bankers and other practitioners. Nonetheless, there is typically also great
interest in time series forecasts at longer horizons. We therefore briefly introduce n-step ahead
pseudo out-of-sample forecasts in this section and revisit them again further below.

Forecasts are produced recursively both for the VAR and the Deep VAR. Specifically, we use the
models we trained on the training data to recursively predict one time period ahead, concatenate
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Table 2: Comparison of n-step ahead pseudo out-of-sample forecasts.

Variable | VAR FRMSE | Deep-VAR FRMSE | VAR correlations | Deep-VAR correlations
IP 0.01870 0.01602 -0.30409 -0.65279
UR 0.85984 0.82785 -0.10093 0.27425
CPI 0.00946 0.00708 -0.33567 0.07823
FFR 0.52321 0.39161 -0.55935 0.01161

the predictions to the training data and repeat the process.? This way we produce one-year ahead
forecasts beginning from the first date in the test sample (octubre, 2008).

Table 2 shows the resulting root mean squared forecast errors (RMSFE) along with correlation
between forecasts and realizations. As we can see in the table, the RMSFE of the Deep VAR is
consistently lower than the one for the VAR. Regarding correlations the VAR produces forecasts
that are negatively correlated with actual outcomes for all time series: in other words, when the
time series evolves in one direction, the VAR forecast tends to evolve in the opposite direction.
For industrial production, the Deep VAR forecast also has a highly negative correlation with the
actual values. For the rest of time series the Deep VAR forecasts correlate positively with actual
outcome, albeit weakly. Another general observation we made with respect to these forecasts is
that the forecasts from the conventional VAR are fairly volatile, while the Deep VAR forecasts
swiftly revert to steady levels (see Figures 11 and 12 in the appendix).

5.4 Varying hyperparameters

While up until now with respect to model selection we have intentionally remained strictly within
the conventional VAR framework, we will now relax that constraint and vary the lag length as well
as hyperparameters of the Deep VAR. In particular, we perform a grid search where we vary the
number of hidden layers (1,2,5), number of hidden units per layer (50,100,150), the dropout rate
(0.3,0.5,0.7) and the lag order (10, 50, 100). For each combination of parameter choices we train the
two models and compute the various performance measures introduced above.? Our expectation is
that the conventional VAR is prone to overfitting and will produce poor out-of-sample outcomes for
higher lag orders. For the Deep VAR we expect to interesting variation in the outcomes for different
lag order and hyperparameter choices. It is not clear ex-ante that the Deep VAR should suffer from
the same issue of overfitting for higher lag orders. The bulk of the corresponding visualizations can
be found in the appendix.

5.4.1 Tuning the Deep VAR

To begin with, we shall forget about benchmarking for a moment and focus on the outcomes for
the Deep VAR as we vary parameters. Recall that a higher number of hidden layers (depth), a
higher number of hidden units (width) and a smaller choice for the dropout rate all correspond

2Note that for the Deep VAR an alternative approach would be to work with a different output dimension
for the underlying neural networks.
30f course, with respect to the conventional VAR only the lag order affects outcomes.
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to an increase in neural network complexity. Consistent with this intuition we find that the in-
sample loss for the Deep VAR improve as complexity increases (Figure 13): higher complexity
leads to a reduction in bias and as we noted earlier the underlying recurrent neural networks
should in principle be able to model arbitrary functions (Goodfellow, Bengio, and Courville 2016).
Conversely, we observe exactly the opposite pattern for out-of-sample loss: as evident from Figure
14 a higher choice for the dropout rate and lower choices for the depth and width of the neural
networks generally yields a smaller out-of-sample RMSE across variables.

Interestingly, both in- and out-of-sample loss tend to decrease significantly as the number of lags
increases. In other words, the Deep VAR seems to be relatively insensitive to overfitting with
respect to the lag order. With that in mind, we find that using standard lag order selection tools
such as the AIC above may in fact not be appropriate for Deep VARs.

Finally, Figure 15 provides an overview of how pseudo out-of-sample forecasting errors behave as we
vary the hyperparameters. As before we produce one-year ahead forecasts starting from the end of
the 80% training sample. In this context, the pattern is less clear and varies across variables. As the
lag order increases, for example, the forecast performance for the unemployment rate deteriorates.
For inflation, forecasts are poor for the medium lag choice of p = 50 and much better for the low
and high lag orders. The exact opposite relationship appears to hold for the Fed Funds Rate. With
respect to the choices for the Deep VAR hyperparameters it is difficult to establish any clear pattern
at all. The magnitude of differences in RMSFE is generally very small, so overall we conclude that
to some extent the variation we do observe may be random.

In light of this evidence, we propose that for the purpose of hyperparameter tuning Deep VARs
researchers should focus on the RMSE associated with the 1-step ahead fitted values. For the
underlying data, a reasonable set of hyperparameter choices could be: 1 hidden layer, 50 hidden
units and a dropout rate of 0.5.

5.4.2 Benchmark

Using the hyperparameter choices proposed above we now turn back to comparing the performance
of the Deep VAR to the conventional VAR. Figure 3 shows the pseudo out-of-sample RMSE and
RMSFE for both models across the different lag choices. For the sake of completeness we also
include the performance measures we obtained when we initially ran both models in section 5.2
using the optimal lag order as determined by the AIC.

The first observation is that the Deep VAR outperforms the VAR across the board, reflecting our
earlier findings. As expected, the VAR is subject to overfitting for when high lag order are chosen.
This trend is observed both for the RMSE as well as the RMSFE. The fact that n-step ahead
forecasts of the VAR are also subject to overfitting with respect to the lag order, while the Deep
VAR appears unaffected, to some extent may reflect what we observed earlier: for the given data,
Deep VAR forecasts swiftly converge to steady levels, while VAR forecasts are volatile, which may
explain the relative outperformance of the Deep VAR. It appears that this effect is amplified for
higher lag orders.

To conclude this empirical section we summarize our main findings:

1. We provide evidence that the conventional, linear VAR fails to capture important non-linear
dependencies across time and variables that are typically used to model the monetary trans-
mission mechanism.
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Figure 3: Pseudo out-of-sample RMSE and RMSFE for both models across the different lag
choices. For the sake of completeness we also include the performance measures we obtained
when we initially ran both models using the optimal lag order as determined by the AIC.

2. Tapping into the broader class of Deep VARs leads to consistently better modelling outcomes.
3. Deep VARs appear to be relatively insensitive to very high lag orders at which conventional
VARs are prone to overfitting.

6 Caveats and extensions

So far we have shown that Deep VARs dominate conventional VARs with respect to modelling
performance. While we believe that our proposed methodology extends the conventional VAR
framework quite naturally, the incorporation of non-linearities through the introduction of deep
learning inevitably leads to a more complicated modelling framework. Consequently, one drawback
of introducing all of the complexities of deep learning into the VAR framework is that previously
simple tasks related to inference and uncertainty quantification are now more difficult. For example,
confidence intervals around point forecasts from a linear VAR can be computed using a closed-form
analytical solution (Kilian and Lutkepohl 2017). No such formulae exist in the context of our
proposed Deep VARs.

But as we already mentioned above, policy-makers rarely base their decisions solely on point esti-
mates, so ultimately our proposed Deep VAR framework needs to be able to quantify uncertainty
around estimates. Future work on this project is likely to focus on this in the first place. Quan-
tifying uncertainty in the Deep VAR context will involve non-parametric bootstrapping or other
forms of Monte Carlo methods. To readers familiar with the conventional VAR framework, this
should to some extent sound familiar since confidence intervals around impulse response functions
are typically bootstrapped. For the Deep VAR, one way to quantify uncertainty around estimates
is to rely on Bayesian neural networks and use dropout not only during training but also at the
inference stage. This is commonly referred to as Monte Carlo dropout and has been used by
Kendall and Gal (2017) and others to this end. Monte Carlo dropout is typically interpreted as
a kind of approximate inference algorithm for Bayesian neural networks. Intuitively, it may help
to think of Monte Carlo dropout as producing a distribution over point estimates through the
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introduction of stochasticity.

Support for the estimation of impulse response functions is another missing cornerstone in the
current version of our proposed framework to which future research should be dedicated. IRFs
are used to infer how system variables changes in response to unit shocks to any of the system
variables. When estimating the model with the traditional VAR, IRFs can be derived from the
reduced form model coefficients. Provided that all the roots of the autoregressive polynomial lie
outside the unit circle, this derivation boils down to transforming the model into its moving aver-
age representation and plugging the shock into the vector moving average (VMA) representation.
Generating IRFs is more difficult in the Deep VAR setting given that we cannot recover the Deep
VMA representation. But while IRFs cannot be retrieved analytically, Verstyuk (2020) manages to
recover them numerically and his proposed methodology should be readily applicable to our Deep
VAR framework.

Within the VAR framework, it is also common to investigate Forecast Error Variance Decomposi-
tions (FEVD). This allows researchers or policy-makers to quantify the percentage of the variability
of the forecast error of one variable that is explained by other variables in the system. Again, this
can be done analytically in the context of linear VARs. It is less obvious how to recover such
decompositions from the Deep VAR, but our intuition is that it will once again involve numerical
methods, in particular Monte Carlo dropout as already discussed above.

Apart from having a framework that can be used to do inference, policy-makers are typically also
concerned about the general interpretability and transparency of the models they use. The linear
relationship between inputs and outputs imposed by the conventional VAR can be easily digested
not only by practitioners, but potentially also by their non-expert audiences. In the case of the
Deep VAR model, the underlying deep neural networks are black boxes: they are inherently non-
transparent. At the time of writing this black-box issue is still largely unresolved, but research into
explainable Al (XAI) has been growing rapidly Fan, Xiong, and Wang (2020). Much like in the
context of uncertainty quantification, the Bayesian approach to neural networks appears to be most
promising when it comes to interpretable deep learning. For example, Ish-Horowicz et al. (2019)
propose a simple entropy-based measure for feature importance in Bayesian neural networks, which
helps to facilitate post-hoc model interpretability.

While we very much recognize the need for model interpretability especially in the context of
policy-making, we believe that the Deep VAR framework proposed here can be augmented to meet
these demands. In light of the Deep VAR’s dominance over conventional VARs when it comes to
modelling performance, we believe that it is certainly worth pursuing further research in this realm.

7 Conclusions

Our initial motivation for this study was to see if by incorporating some of the latest developments
from the machine learning and deep learning domains in the conventional VAR framework, we could
attain improvements in the modelling and forecasting performance. In an effort not to deviate too
much from the established framework, we only relax one single assumption to move from the
conventional linear VAR to a broader class of models that we refer to as Deep VARSs.

To assess the modelling performance of Deep VARs compared to linear VARs we investigate a
sample of monthly US economic data in the period 1959-2021. In particular, we look at variables
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typically analysed in the context of the monetary transmission mechanism including output, infla-
tion, interest rates and unemployment. Our empirical findings show a consistent and significant
improvement in modelling performance associated with Deep VARs. In particular, our proposed
Deep VAR produces much lower cumulative loss measures than the VAR over the entire period and
for all of the analysed time series. The improvements in modelling performance are particularly
striking during subsample periods of economic downturn and uncertainty. This appears to confirm
or initial hypothesis that by modelling time series through Deep VARs it is possible to capture
complex, non-linear dependencies that seem to characterize periods of structural economic change.

When it comes to the out-of-sample performance, a priori it may seem that the Deep VAR is prone
to overfitting, since it is much less parsimonious that the conventional VAR. On the contrary, we
find that by using default hyperparameters the Deep VAR clearly dominates the conventional VAR
in terms of out-of-sample prediction and forecast errors. An exercise in hyperparameter tuning
shows that its out-of-sample performance can be further improved by appropriate regularization
through adequate dropout rates and appropriate choices for the width and depth of the neural.
Interestingly, we also find that the Deep VAR actually benefits from very high lag order choices at
which the conventional VAR is prone to overfitting. In summary, we provide solid evidence that
the introduction of deep learning into the VAR framework can be expected to lead to a significant
boost in overall modelling performance. We therefore conclude that time series econometrics as
an academic discipline can draw substantial benefits from further work on introducing machine
learning and deep learning into its tool kit.

We also point out a number of shortcomings of our proposed Deep VAR framework, which we believe
can be alleviated through future research. In particular, policy-makers are typically concerned with
uncertainty quantification, inference and overall model interpretability. Future research on Deep
VARSs should therefore address the estimation of confidence intervals, impulse response functions
as well as variance decompositions typically analysed in the context of VAR models. We point
to a number of possible avenues, most notably Monte Carlo dropout and a Bayesian approach to
modelling deep neural networks.
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A Tables

IP UR CPI FFR

min -0.14 -10.60 -0.01 -1.76
max  0.06 5.10  0.01 1.61
mean  0.00 0.02 0.00 -0.00
sd  0.01 0.81 0.00 0.27

var  0.00 0.66 0.00 0.08
median  0.00 0.00 -0.00 0.00
IQR 0.01 0.70 0.00 0.28

Table 3: Summary statistics for the full sample.

IP UR CPI FFR

min -0.04 -2.70 -0.01 -1.76
max 0.06 250 0.01 1.61
mean 0.00 0.01 0.00 -0.00
sd  0.01 0.63 0.00 0.27

var 0.00 0.40 0.00 0.08
median  0.00 0.00 -0.00 0.00
IQR 0.01 0.63 0.00 0.28

Table 4: Summary statistics pre Covid.

1P UR CPI FFR

min -0.14 -10.60 -0.01 -0.63
max 0.06 5.10 0.01 0.35
mean -0.00 0.68 0.00 0.01
sd 0.05 4.04 0.00 0.23

var 0.00 16.31 0.00 0.05
median  0.01 1.60 0.00 0.06
IQR  0.01 2.20 0.00 0.10

Table 5: Summary statistics post Covid.
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Figure 6: ACF plots of full-sample residuals.
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Figure 8: Deep VAR fitted values plotted against observed values for the training sample.
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Figure 11: VAR n-step ahead forecasts plotted against observed values. Forecasts are for
the first year of the test sample.

Type:

— Actual

CPI

Value

---- Forecast

FFR

1 1 1 1
2007-07 2008-01 2008-07 2009-01 2009-07
Date

Figure 12: Deep VAR n-step ahead forecasts plotted against observed values. Forecasts are
for the first year of the test sample.
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Figure 13: Train sample RMSE for Deep VAR for different variables.
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Figure 14: Test sample RMSE for Deep VAR for different variables.
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Figure 15: Pseudo out-of-sample RMSFE for Deep VAR for different variables.
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different variables.
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Figure 17: Comparison of pseudo out-of-sample RMSFE for conventional VAR and Deep
VAR for different variables.
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C R Code and Package

All code used for the empirical analysis presented in this article can be found on the correspond-
ing GitHub repository. Researchers interested in using Deep VARs more generally for their own
empirical work may find the R deepvars package useful which is being maintained by one of the
authors. The package is still under development and as of now only available on GitHub. To install
the package in R simply run:

devtools: :install_github("pat-alt/deepvars", TRUE)

Package vignettes will take you through the basic package functionality. Once the package has
been installed simply run utils: :browseVignettes() to access the documentation.
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